
assignment(qli) assignment(qli)

NAME
assignment −assigning values to fields or variables

SYNTAX

Field Assignment:

dbfield-expression-1::= { value-expression | edit [dbfield-expression-2] }

dbfield-expression::= [context-variable.]field-name

Variable Assignment:

variable-name= value-expression

DESCRIPTION
The assignmentstatement assigns values to fields in themodify and store commands, or values to
variables. Chapter5 of this manual contains a detailed discussion of theassignmentstatement.

ARGUMENTS
dbfield-expression-1Specifies the field to receive a value. Thecontext-variable optionally names the
relation.

value-expressionSpecifies the value you want to assign todbfield-expression. This value can be a quoted
literal, a reference to another field, a prompting value expression (*.’your own prompt’), an aggregate or
statistical expression, or the wordnull to assign the missing value.

dbfield-expression-2Specifies the blob field whose contents you would like to edit for assignment to
dbfield-expression-1.

variable-nameIdentifies the variable to which you want to assign a value. Thevariable must have been
declared with adeclare variable command.

value-expressionSpecifies the value you want to assign tovariable-name.

EXAMPLE
The following example stores a record, using abegin-endstatement to structure a compound statement for
assigning values to each field:

QLI> store ski_areas using

CON> begin

CON> city = "Andover"

CON> state = "MA"

CON> name = "Parker State Forest"

CON> type = "N"

1

assignment(qli) assignment(qli)

CON> end

QLI> The following example modifies a field value:

QLI> for c in cities with c.city = "Boston"

CON> modify using c.population = c.population * 1.10

QLI>

SEE ALSO
Chapter 5 discusses theassignmentstatement in detail.See also the manual pages forbegin-end, modify,
andstorestatements in this manual.

DIAGNOSTICS
You may encounter the following messages when you use theassignmentstatement:

• Operation failed on database "database-file-name"with any of the following secondary messages:

— arithmetic exception, numeric overflow, or string truncation. A value that you tried to
store or modify did not fit.Check the field’s characteristics and try again.

— attempt to store a duplicate value in a unique index. A field value that you tried to store
or modify violated the DUPLICATES NOT ALLOWED restriction for an index that
includes that field.Try another value.

— conversion error. This is a generic data conversion error that covers all but the following
two cases.

— conversion error from string "out-of-range-date"You tried to store or modify a date field
with a value outside the range 1 January 100 to 11 December 5941, or an invalid date
such as 29 February 1986.Try a value within the valid range. If the range is not
adequate, you cannot use the date datatype.

— conversion to blob not supported. You tried to store non-blob data in a blob field.Use
theedit option described above.

— validation error for field field-name, value "supplied-value". A field value that you tried
to store or modify violated the VALID_IF clause for a field.Check the valid values and
try again.

• "string" is undefined or used out of context. This is aqli message in response to an unrecognized
string.

• execution terminated by signal. You probably issued an end-of-file command.

• user aborted (WC -Q) edit operation (display manager/Pad manager). You probably exited from
the editor during a blob assignment without doing anything. Thisinformational message comes
from outsideqli .

• no permission for "type" access to "object". A security class exists for the specified object, and its
access control list prohibits you from reading or writing that object.

2

assignment(qli) assignment(qli)

• action cancelled by trigger to preserve data integrity. A trigger exists for an object you tried to
modify or delete, and the corollary actions associated with the trigger prohibit that operation.

See also the discussion of errors in Chapter 1.

3

begin-end(qli) begin-end(qli)

NAME
begin-end −begin/end block

SYNTAX

begin
qli-statement...
end

DESCRIPTION
Thebegin-endstatement groupsqli statements into a single compound statement called abegin-end block.

You can include in the begin-end block a procedure that specifies some complete operation.For example,
you may have a procedure that prompts you for values and updates a record.You can use fragmentary
procedures, but you must include enough additional information to make complete statements.

ARGUMENTS
qli-statementAny of theqli statements listed in Chapter 1, and therepeatcommand.

EXAMPLE
The following example stores a record, using a begin/end block for assignment statements:

QLI> store cities using

CON> begin

CON> city = ’Shadkill’

CON> state = ’NY’

CON> population = 20000

CON> altitude = 17

CON> end

QLI>

SEE ALSO
The manual pages for the statements listed inSyntax.

DIAGNOSTICS
You may encounter the following message when you use thebegin-endstatement:

• expected statement, encountered "command".

You included a command in the begin/end block. Use only the statements listed in theSyntax
section above.

See also the discussion of errors in Chapter 1.

1

boolean-expression(qli) boolean-expression(qli)

NAME
boolean-expression −relationship between value expressions

SYNTAX

boolean-expression::= { [not] conditional-expression|
conditional-expressionand conditional-expression|
conditional-expressionor conditional-expression}

conditional-expression::= { comparison-condition| between-condition|
starting-condition | containing-condition|
matching-condition | not-condition | unique-condition}

DESCRIPTION
A boolean-expressionevaluates to true, false, or missing.It describes the characteristics of a single value
expression (for example, a missing value) or the relationship between two value expressions (for example,x
is greater thany).

The order of precedence for evaluating compound Boolean expressions isnot, and, andor.

ARGUMENTS
comparison-conditionDescribes the characteristics of a single expression. Theformat of thecomparison-
conditionfollows:

Syntax: comparison-condition of Boolean Expression

value-expression-1 relational-operator value-expression-2

Therelational-operator can be any of the operators in the following table:

1

boolean-expression(qli) boolean-expression(qli)

Operator Relationship

eqor = or == equal

neor <> or != not equal

gt or > greater than

geor >= greaterthan or equal

lt or < less than

le or <= lessthan or equal

between-conditionTests whether a value expression,value-expression-1, occurs between two other value
expressions,value-expression-2andvalue-expression-3. This test is inclusive of the boundary values. The
format of thebetween-conditionfollows:

Syntax: between-condition of Boolean Expression

value-expression-1[not] between
value-expression-2and value-expression-3

containing-conditionTests for the presence ofstring (case-insensitive) anywhere invalue-expression. It
evaluates to true ifstring is contained invalue-expression. If the value ofvalue-expressionis missing, the
result is missing.The format of thecontaining-conditionfollows:

Syntax: containing-condition of Boolean Expression

value-expression-1[not] containing value-expression-2

Qli recognizesct andcont as synonyms forcontaining. starting-conditionTests for the presence ofstring
(case-sensitive) at the beginning of value-expression. It evaluates to true if the first characters ofvalue-

2

boolean-expression(qli) boolean-expression(qli)

expressionmatchstring. The search is case-sensitive. The format of thestarting-conditionfollows:

Syntax: Starting Boolean Expression

value-expression-1[not] starting with value-expression-2

matching-conditionTests for the presence ofwildcarded-string, a string that can contain the wildcard
characters* and?. The asterisk matches an unspecified run of characters, while the question mark matches
a single character. This test is caseinsensitive. The format of thematching-conditionfollows:

Syntax: matching-condition of Boolean Expression

value-expression-1[not] matching value-expression-2

missing-conditionTests for the absence of a value indbfield-expression. It is true if the value ofdbfield-
expressionis missing.The format of themissing-conditionfollows:

Syntax: missing-condition of Boolean Expression

dbfield-expression[not] missing

Unless you specify otherwise in the field’s definition, qli prints blanks for numbers, characters, and dates,
and nothing for blobs.See the for more information about defining alternate missing values.

any-conditionTests for the existence of at least one qualifying record in a relation or relations.This
expression is true if the record stream specified byrse includes at least one record.If you addnot, the
expression is true if there areno records in the record stream.The format of theany-conditionfollows:

Syntax: any-condition of Boolean Expression

[not] any rse

You might want to useany instead of joining records if all you want to do is establish that a record exists.
As soon finds one record that meets the search criteria, it stops, whereas a join would continue until it found
all qualifying records.

unique-conditionTests for the existence of exactly one qualifying record.This expression is true if the
record stream specified byrse consists of only one record.If you addnot, the condition is true if there is
more than one record in the record stream or if the record stream is empty. The format of theunique-
conditionfollows:

3

boolean-expression(qli) boolean-expression(qli)

Syntax: unique-condition of Boolean Expression

[not] unique rse

EXAMPLES
The following query looks for cities with populations between 100,000 and 250,000:

QLI> for cities with population between 100000 and 250000

CON> print city, state, populationThe following query looks for cities with the substringville somewhere in their name:

QLI> print cities with city containing ’ville’

The following query looks for cities that start with the stringNew:

QLI> print states with state_name starting with ’New’

The following query looks for cities with the strington following any number of other characters:

QLI> print cities with city matching ’*ton*’

The following query looks for states with the state abbreviation equal toN followed by exactly one
character:

QLI> print states with state matching ’N?’

The following query looks for states that have a missing value for theCAPITOL field:

QLI> print states with capitol missing

The following query prints the name of any state for which there are cities stored:

QLI> for s in states with any c in cities over state

CON> print s.state_nameThe following query prints the names of states that have only one ski area:

QLI> for s in states with unique ski in ski_areas over state

CON> print s.state_name

SEE ALSO
value-expression(qli), rse (qli)

4

commit(qli) commit(qli)

NAME
commit −write changes to database

SYNTAX

commit [database-handle-commalist]

DESCRIPTION
Thecommit command writes to the database changes made during the transaction.

You can use thecommit statement in conjunction with theprepare statement to execute a two-phase
commit. Thedatabase software automatically executes such a commit when necessary, but ,if required, you
can control the two-phase commit explicitly. See the manual page forprepare in this manual.

ARGUMENTS
database-handleSpecifies a name that can be used to qualify database reference when you are using
multiple databases.If you do not specify a database handle, thecommit command affects all open
databases; writes to the database(s) all changes to data and metadata.It also flushes all modified buffers
and closes any record streams that are open.

If you assign a database handle when you ready the database, you can use the handle to limit the effect of
the commit to specific databases.When you access more than one database inqli , the database software
automatically starts up separate subtransactions for each database.However, these behave as a single
transaction. Theoptionaldatabase-handlelets you control these subtransactions explicitly by letting you
commit or roll back transactions by database.

If you forgot to assign a database handle when you readied the database and run into a problem with a
database while you have sev eral open, do not despair;qli assigns a default handle if you have not specified
one. Type the following to find out the default database handle assigned byqli :

QLI> show databases

Database "atlas.gdb" readied as QLI_0

QLI>

Qli displays the names of all available entities, including databases and handles.The default handles are of the form ‘‘QLI_n,’’ w here

n is a numeric integer. Supply this handle as an argument to thecommit command:

QLI> commit qli_1

QLI>

1

commit(qli) commit(qli)

EXAMPLE
The following qli script readies a database, stores a record, thus starting a transaction, and then commits the
transaction:

QLI> ready atlas.gdb

QLI> store ski_areas

.

.

.

QLI> commit

QLI>

SEE ALSO
rollback (qli), finish (qli), prepare (qli)

DIAGNOSTICS
You may encounter the following message when you use thecommit statement:

• expected database handle, encountered <string>.

You need a database handle.You may have mistyped the handle.Use theshow databases
command to check the database handle.

See also the discussion of errors in Chapter 1.

2

declare variable(qli) declarevariable(qli)

NAME
declare variable −local and global variables

SYNTAX

declarevariable-name datatype

datatype ::= { short [scale-clause] | long [scale-clause] | float |
double | char[n] | varying [n] | date }

scale-clause::= scale [-]n

DESCRIPTION
Thedeclare statement lets you declare local and global variables for use inqli . ‘‘Local scoping’’ refers to
use within a begin—end block.You can use variables in statements, reports, and procedures.To assign a
value to a variable, use theassignmentstatement.

This table lists the datatypes by size and range/precision.

Datatype Size Range/Precision

short 16 bits -32768 to 32767

long 32 bits -2**31 to (2**31)-1

float 32 bits approx. 7 decimal digits

double 64 bits approx. 15 decimal digits

char[n] n bytes 0to 32767 characters

varying[n] 0 to 32767 charactersvaries up to n
bytes

date 64 bits 1 January 100 to 11 December 5941

ARGUMENTS
variable-nameNames the variable. Thevariable name must start with an alphabetic character (a-—z), and
can contain numbers, underscores, and dollar signs.

1

declare variable(qli) declarevariable(qli)

scale-clauseSpecifies the power of 10 by which the database software multiplies the stored integer value
for use byqli . None of the supported languages supports the scale factor. For example, a negative scale of
two means that there should be a decimal point two places to the left of the digits.

EXAMPLES
The following command declares a variableGLARP, assigns 617, and prints the variable’s value:

QLI> declare glarp long

QLI> glarp = 617

QLI> print glarp

.sp 0.5

GLARP

=========

617

.sp 0.5

QLI> The following extract uses a prompting expression in the variable assignment:

QLI> declare glarp long

QLI> glarp = *.’value for glarp’

Enter value for glarp: 412

QLI>

SEE ALSO
assignment(qli)

DIAGNOSTICS
You may encounter the following message when you use thedeclare variable statement:

• expected field definition clause, encountered "bad string"

You tried to declare a variable, but the field definition was incorrect.Check the syntax and try
again.

See also the discussion of errors in Chapter 1.

2

define procedure(qli) define procedure(qli)

NAME
define procedure −storing procedure

SYNTAX

define procedure [database-handle.]procedure-name
operation...
end_procedure

operation ::= { qli-command| qli-procedure |
qli-statement| qli-clause | qli-keyword }

DESCRIPTION
Thedefine procedurestatement stores a sequence ofqli operations in the database.

You can include a running commentary in your procedures so that other people can figure out what it does.
Comment lines inqli begin with a slash and asterisk and end with an asterisk slash:

QLI> define procedure gl451

CON> /* This procedure does some useful things

CON> Well, maybe not really useful,

CON> but it does do something. */

CON> print states with capitol = *.’capitol city’

ARGUMENTS
[database-handle.]procedure-nameNames the procedure.The procedure name can be up to 31 characters
and can contain alphabetic characters (A—Z and a—z, all stored as uppercase), numeric characters (0—9),
underscores (_), and dollar signs ($).The procedure name must start with an alphabetic character.

The optional database handle specifies the database in which the procedure is stored.

qli-statementAny of theqli statements listed in Chapter 1.

qli-commandAny of theqli commands listed in Chapter 1.

qli-clauseA clause from aqli command or statement.

qli-keyword A qli keyword.

EXAMPLE
The following sequence of commands defines a procedure that finds a record using a prompted-for value:

1

define procedure(qli) define procedure(qli)

QLI> define procedure capitol_info

CON> /* saves typing a common query */

CON> for s in states cross c in cities over state with

CON> s.state = *.’state code’ and

CON> s.capitol = c.city

CON> print s.capitol | ’ has a population of ’ | c.population

CON> end_procedure

QLI> :capitol_info

Enter state code: AZ

Phoenix has a population of 789704

QLI>

SEE ALSO
See Chapter 8 of this manual for a complete discussion of procedures.See also the manual pages foredit
procedure, delete procedure, and rename procedure in this manual.

DIAGNOSTICS
You may encounter the following message when you use thedefine procedurestatement:

• procedure name <name> in use.

Choose another name.

• procedure name over 31 characters.

Choose a shorter name.

• gds_$create_blob failed.

The database software could not create the field in which the procedure text is stored.Try again.

• You may get the following errors when you execute a procedure:

— procedure <name> is undefined.

The procedure does not exist as specified.Typeshow proceduresfor a list of procedures.

— Procedure <name> not found.

The procedure does not exist as specified.Typeshow proceduresfor a list of procedures.

See also the discussion of errors in Chapter 1.

2

delete procedure(qli) delete procedure(qli)

NAME
delete procedure −deleting procedure

SYNTAX

delete procedureprocedure-name

DESCRIPTION
Thedelete procedurecommand deletes a stored procedure.

ARGUMENTS
procedure-nameSpecifies the procedure you want to delete.

EXAMPLE
The following sequence of commands deletes a procedure:

QLI> delete procedure sunbelt_cities

QLI>

SEE ALSO
See Chapter 8 of this manual for a comprehensive discussion of procedures.See also the manual pages for
define procedureandedit procedure.

DIAGNOSTICS
You may encounter the following message when you use thedelete procedurestatement:

• procedure <name> not found. The procedure does not exist as specified.Type show procedures
for a list of procedures.

See also the discussion of errors in Chapter 1.

1

delete(qli) delete(qli)

NAME
delete −erase record

SYNTAX

delete from relation-name[alias] [wherepredicate]

DESCRIPTION
Thedeletestatement erases one or more records in a relation.

If you do not provide a search condition, deletes all records inrelation-name. Be very careful with this
option.

You cannot delete records from views or joins.Rather, you must erase them through the source relations.

ARGUMENTS
relation-nameSpecifies the relation from which a record is to be deleted.

alias Qualifies field references with an identifier that indicates the source relation.Thealias can be useful
if predicatereferences sources with overlapping field names.

The alias can contain up 31 alphanumeric characters, dollar signs ($), and underscores (_).However, it
must start with an alphabetic character (A—Z, a—z).

where predicateDetermines the record(s) to be deleted.If you provide a search condition with the optional
wherepredicateclause, deletes the record(s) selected fromrelation-name.

EXAMPLE
The following statement deletes all records from theCITIES relation with a value forPOPULATION of less
than 100,000:

QLI> delete from cities-

CON> where population < 100000;

QLI>

The following statement deletes the entireTERRITORIESrelation:

QLI> delete from territories;

QLI>

The following example deletes all qualifying records:

1

delete(qli) delete(qli)

QLI> delete from ski_areas-

CON> where name = ’Birchwood Slopes’;

SEE ALSO
predicate(qli), select-expression(qli)

DIAGNOSTICS
You may encounter the following messages when you use thedeletestatement:

• can’t erase from a join.

You tried to erase from a join.This is an illegal operation. If you want to erase records in
different relations, you must do so in separate statements.

• no context for ERASE.

You did not provide a record selection expression. Try again.

See also the discussion of errors in Chapter 1.

2

edit command(qli) edit command(qli)

NAME
edit −editing commands

SYNTAX

edit

DESCRIPTION
Theedit command calls your default text editor, places the contents of your lastqli command or statement
in the editing buffer, and then deposits you in that buffer. You can then revise theqli command or
statement.

Use the standard editing commands to change the command line as you want. You can also use this
command to repeat the previous command by not changing the contents of the editing buffer, and then
exiting. In either case, when you finish editing, exit from the editor as you normally do.Qli automatically
executes the revised command.

EXAMPLE
The following example corrects a syntactic error:

QLI> print cities with state = New York

** QLI error: expected end of statement, encountered "YORK"

QLI> edit

Qli calls your default editor. Add quotes around the stringNew York. Exit from
the editor. Qli executes the query and displays the records.

QLI>

DIAGNOSTICS
The only errors you will receive from this command are those generated by your editor. Problems may
include a lack of disk space or protection violations that prevent the editor from opening a scratch or
journal file.

1

edit procedure(qli) edit procedure(qli)

NAME
edit procedure −editing or creating procedures

SYNTAX

edit [database-handle.]procedure-name

DESCRIPTION
Theedit procedurecommand lets you change a stored procedure or create a new one.

When you issue theedit procedure command,qli calls your default editor. If the procedure already exists,
qli writes the text of the procedure to the editing buffer. The buffer does not include thedefine procedure
andend_procedurestructure. Usethe standard editing commands to change the procedure as you want.

If the procedure does not exist, qli opens an empty edit window or buffer. Enter qli commands or
statements. Donot use thedefine procedure and end_procedure commands that you would use to define
a procedure at theQLI> prompt. Qli supplies these for you.

When you finish editing a procedure or inserting a new one, exit from the editor as you normally do.Qli
automatically stores the procedure in the database.

ARGUMENTS
[database-handle.]procedure-nameNames the procedure you want to edit or create.

The optional database handle specifies the database in which the procedure is stored.

EXAMPLE
The following example edits a procedure:

QLI> edit high_cities

Qli calls your default editor. Edit the procedure and exit.

SEE ALSO
See Chapter 8 of this manual for a comprehensive discussion of procedures.See also the manual pages for
define procedureanddelete procedure.

DIAGNOSTICS
You may encounter the following messages when you use theedit procedurecommand:

• procedure name <name> in use.

Choose another name.

• procedure name over 31 characters. Choose a shorter name.

• gds_$create_blob failed.

1

edit procedure(qli) edit procedure(qli)

The database software could not create the field in which the procedure text is stored.Try again.

• Errors from your editor. Possible problems include a lack of disk space or protection violations
that prevent the editor from opening a scratch or journal file.

See also the discussion of errors in Chapter 1.

2

erase(qli) erase(qli)

NAME
erase −erase record

SYNTAX

erase[[all of] rse]

DESCRIPTION
Theerasestatement removes from the database the record(s) specified by the record selection expression.

You cannot erase records from views or joins.Rather, you must erase them through the source relations.

ARGUMENTS
rse
all of rseSpecifies that selected by the specified record selection expression are to be deleted:

• If you do not specify anrse, you must select the record or records to be deleted in an
outerfor loop.

• If you do specify anrse, you must provide a complete record selection expression in the
erasestatement.

EXAMPLE
The following example identifies the record to be deleted in anrse in theerasecommand itself:

QLI> erase all of cities with population < 100000 or

CON> population missing

QLI> The following example uses afor loop to identify the record you want to erase:

QLI> for cities with population < 100000 or population missing

CON> print then

CON> if *.’keep it?’ containing ’n’ erase

QLI>

SEE ALSO
for (qli), rse (qli)

DIAGNOSTICS
You may encounter the following messages when you use theerasestatement:

• can’t erase from a join.

You tried to erase from a join.This is an illegal operation. If you want to erase records in
different relations, you must do so in separate statements.

1

erase(qli) erase(qli)

• no context for erase.

You did not provide a record selection expression. Try again.

See also the discussion of errors in Chapter 1.

2

exit(qli) exit(qli)

NAME
exit −exiting qli

SYNTAX

exit

DESCRIPTION
Theexit command ends aqli session and commits the current transaction.

Exit , quit , and the end-of-file character are exactly equivalent. Theend-of-file characters are system-
dependent:

• Control-Z for VAX/VMS, MicroVMS, andAPOLLO

• Control-D for ULTRIX andSUN

EXAMPLE
QLI> exit

☞

SEE ALSO
quit (qli), commit (qli), finish (qli)

1

finish(qli) finish(qli)

NAME
finish −close database

SYNTAX

finish [database-handle-commalist]

DESCRIPTION
Thefinish command explicitly closes a database.

If you close a database and want to access it later, you must ready it again.

ARGUMENTS
database-handleSpecifies the database to close.If you do not specify a database handle, thefinish
command implicitly commits all default transactions and closes all open databases.

If you close a specific database, commits the default transaction for that database.

If you neglected to declare a database handle when you opened the database, you can use the default handle
declared byqli . Use theshow databasescommand to display the name of the handle thatqli declared for
the database.

EXAMPLE
The following command closes all open databases:

QLI> finish

The following example readies two databases, performs some data manipulation, and closes one of the
databases:

QLI> ready /usr/igor/datafiles/atlas.gdb as atlas

QLI> ready maps.gdb as map

.

.

.

QLI> finish atlas

SEE ALSO
ready (qli), commit (qli), rollback (qli)

DIAGNOSTICS
You may encounter the following message when you use thefinish command:

• expected database handle, encountered <string>.

1

finish(qli) finish(qli)

You need a database handle.You may have mistyped the handle.Type show databasesto check
the database handle.

See also the discussion of errors in Chapter 1.

2

for(qli) for(qli)

NAME
for −repeating loop

SYNTAX

for rse qli-statement

DESCRIPTION
The for statement evaluates a record selection expression and executes a substatement for each qualifying
record.

You can nestfor loops to display a hierarchy of records or to join relations across databases.

ARGUMENTS
rseProvides the record selection criteria to form a record stream.

qli-statementAny of theqli statements listed in Chapter 1.

EXAMPLE
The following example creates a record streamfor loop and displays records from that stream:

QLI> for states sorted by state

CON> print capitol, state, statehood

The following example joins two relations:

QLI> for states cross cities over state sorted by city

CON> print city, state, altitude, population

The following example uses a for loop to select records to be erased and then erases them:

QLI> for ski_areas with state = ’FL’

CON> erase

The following example displays a hierarchy of records in a sort of part—component application.It picks up a value from an outer

loop, prints it, and then prints associated values from another relation in an inner loop:

QLI> for r in rivers sorted by river

CON> begin

CON> print river

CON> for rs in river_states with r.river = rs.river

1

for(qli) for(qli)

CON> print state

CON> end

The following example is equivalent to a join operation across databases:

QLI> ready apollo:/usr/data/mapper.gdb as mapper

QLI> ready atlas.gdb as atlas

QLI> for s in atlas.states sorted by s.state

CON> begin

CON> for c in mapper.cities with

CON> s.state = c.state

CON> print s.state_name, c.city, c.population

CON> end

Note that you cannot reference relations from more than one database in a record selection expression. Therefore,for loops are the

way to combine relations across databases.

SEE ALSO
rse (qli)

DIAGNOSTICS
You may encounter the following message when you use thefor statement:

• relations from multiple databases in single rseandcan’t mix databases within RSE.

You tried to access more than one database in the same record selection expression. Usenested
for statements to do that.

See also the discussion of errors in Chapter 1.

2

help(qli) help(qli)

NAME
help −online assistance

SYNTAX

help [qli-command| qli-statement]

DESCRIPTION
The help command provides assistance onqli commands and statements.If you do not ask for help on a
commandor statement, qli displays a listing of what help is available. If you ask for help on a subject for
which there is no assistance,qli tells you that no help is available for that subject.

The first time you ask for help, there may be a slight delay as readies the database containing the help
topics.

ARGUMENTS
qli-commandSpecifies theqli command for which you want help.

qli-statementSpecifies theqli statement for which you want help.

MODIFYING HELP
You can edit the help files, add new topics, or delete existing ones.For example, you may want to replace
frivolous examples with ones more closely tied to your application or document procedures that you want
ev eryone to use.To do any of these things, invokeqli and ready the help database:

• sys$help:help.gdbon VAX/VMS systems

• /usr/gds/help/help.gdbon UNIX systems

• /sys/gds/help.gdbon DOMAIN systems

Use theshow commands to see the record structure of the help database:

QLI> show fields

Database "help.gdb"

TOPICS

TOPIC text, length 31

FACILITY text, length 6

SYSTEM_FLAG text, length 1

TEXT blob, segment length 80

.sp

QLI>

The databasehelp.gdbcontains all the help topics.Now that you have readied the help database, you can
manipulate it as you would your own database.To modify a topic, select the record with anRSE and
change field values. For example:

1

help(qli) help(qli)

QLI> modify text of topics with topic = STORE

Qli calls your default editor. Make any changes you want to the
text, and then exit from the editor in the normal manner.

QLI>

To store a new topic, use thestoreor insert statement. For example:

QLI> store topics

Enter TOPIC: LJUBJANKA

Enter SYSTEM_FLAG: X

Enter FACILITY: NKVD

Qli calls your default editor. Make any changes you want to the
text, and then exit from the editor in the normal manner.

QLI>

Standard help topics have a system flag of ‘‘S’’; your messages should use some other flag value so they
will not be overwritten when new software versions update the help library.

Finally, use theerasestatement to remove unwanted topics:

QLI> for topics with topic = SELECT

CON> erase

QLI>

As you enter new topics and modify existing ones, you should pay attention to the form of theTOPIC name.
Whenever someone asks for help on a particular subject, the help facility in qli searches throughTOPICS
for a match on theTOPIC field. You have problems with multiple word topics unless you use underscores
between them.

EXAMPLE
The following command displays the general help listing:

QLI> help

The following command displays help about thestorestatement:

QLI> help store

SEE ALSO
modify (qli), store (qli), erase(qli)

DIAGNOSTICS
You may encounter the following message when you use thehelp command:

2

help(qli) help(qli)

• No help is available for "subject".

The subject for which you requested help does not exist. Typehelpfor a list of topics.

See also the discussion of errors in Chapter 1.

3

if—else(qli) if—else(qli)

NAME
if—else −if—then—else construct

SYNTAX

if boolean-expression[then]
qli-statement
else
qli-statement

DESCRIPTION
The if—else statement provides an if—then—else structure inqli . The optionalthen in the syntax is a
noiseword.

ARGUMENTS
qli-statementAny of the statements listed in Chapter 1 or a procedure.Generally speaking, it will be a
begin—endstatement.Qli requires a hyphen after the firstend. For example:

if expression

begin

qli-statement

qli-statement

end -

else

begin

qli-statement

qli-statement

end

boolean-expressionSpecifies a condition that must be true for theif to be executed. If the condition is not true, theelsebranch is

executed.

EXAMPLE
The following fragment demonstrates anif—else in qli :

QLI> if full_name = " " or full_name missing

CON> print ...

CON> else print ...See Chapter 7 for a complete example.

DIAGNOSTICS
You may encounter the following message when you use theif—elsestatement:

1

if—else(qli) if—else(qli)

• expected statement, encountered "command". You cannot use a command with theif—else
statement.

See also the discussion of errors in Chapter 1.

2

insert(qli) insert(qli)

NAME
insert −store a record

SYNTAX

insert into relation-name (database-field-commalist)
{ values constant-commalist| select-statement}

DESCRIPTION
The insert statement stores a new record into a relation.

You cannot use theSQL variant of qli to store records with blob fields.Use thestore statement to store
such records.

ARGUMENTS
relation-nameSpecifies the relation into which you want to store a new record.

database-fieldLists the field inrelation-namefor which you are providing a value.

If you want to store the missing value for a field, do not reference that field in theinsert statement.

If the database field is a blob, you can only assign thenull value.

constantProvides a value fordatabase-field. You can assign field values by inserting quoted strings, and
quoted or unquoted numbers.

select-statementSpecifies that the values for the new record are to come from the record identified by a
selectstatement.

EXAMPLES
The following statement inserts quoted values:

QLI> insert into ski_areas (name, type, city, state)

CON> values (’Radar Acres’, ’N’, ’Dunstable’, ’MA’); The following example stores a new record intoCITIES, using most of
the values from an existing record:

QLI> insert into cities-

CON> (city, state, latitude_degrees, latitude_minutes,

CON> latitude_compass, longitude_degrees, longitude_minutes-

CON> longitude_compass)

CON> select ’Troy’, state, latitude_degrees, latitude_minutes,

CON> latitude_compass, longitude_degrees, longitude_minutes,

1

insert(qli) insert(qli)

CON> longitude_compass-

CON> from cities where city = ’Albany’ and state = ’NY’The following statement stores a new record intoCITIES, implicitly
assigning the missing value to all unreferenced fields:

QLI> insert into cities-

CON> (city, state)-

CON> values (’Lowell’, ’MA’); The following statement stores a new record intoTOURISM, but does not reference the
blob fieldsOFFICEor GUIDEBOOK, thereby assigning the missing value to those fields:

QLI> insert into tourism-

CON> (state, zip, city)-

CON> values (’NY’, ’10022’, ’New York’);

SEE ALSO
select(qli), store (qli)

DIAGNOSTICS
See the manual page for theassignmentstatement. Seealso the discussion of errors in Chapter 1.

2

list(qli) list(qli)

NAME
list −displaying records

SYNTAX

Standalone format:

list value-expression-commalistof rse
[on ’filespec’ | to shell-command]

For loop format:

for rse
list value-expression-commalist

DESCRIPTION
The list statement displays fields from records in a record stream.Unlike the print statement, it displays
the field values in a vertical format.

ARGUMENTS
value-expressionof rse Specifies a list of fields or other values from the record stream created by the record
selection expression.

on ’filespec’Sends the output to the named, quoted file, rather than writing it to your monitor.

to shell-commandSends the output to standard input of the shell or command interpreter command, rather
than writing it to your screen.These commands typically send the output to a printer, as in print , lpr , lpt ,
prf , and ’prf -npag’ . Note that if you include a switch on the shell command, you must quote the entire
command.

EXAMPLE
The following query lists all records inSTATES:

QLI> list states

QLI> The following query includes afor loop that selects records:

QLI> for states with area lt 10000

CON> print state_name, area The following query writes field values fromSTATESto the filestate_data.dat:

QLI> list state, capitol, area of states on ’state_data.dat’

SEE ALSO
print (qli)

1

list(qli) list(qli)

DIAGNOSTICS
You may encounter the following message when you use thelist statement:

• no items in print list. You must provide a record selection expression or value expression.

• Can’t open output file. Qli cannot open an output file for aprint on filespeccommand.

See also the discussion of errors in Chapter 1.

2

modify(qli) modify(qli)

NAME
modify −change field value

SYNTAX

modify { dbfield-expression-commalist| using assignment-statement} [of rse]

dbfield-expression::= [context-variable.]field-name

DESCRIPTION
Themodify statement updates a field or fields in a record or records.

ARGUMENTS
dbfield-expressionSpecifies the field you want to update.Qli prompts you for a field value.

assignment-statementAssigns the supplied constant or missing value to the field.

If you want to modify a blob field, use either theedit option of theassignmentstatement orqli ’s prompting
feature.

rseSpecifies record selection criteria.

If you do not supplyrse, you must enclose themodify command in afor loop that contains a record
selection expression.

You cannot update records through a view. If you want to update such records, you must change them
through the source relations.

EXAMPLE
The following statements change the same record using themodify statement in different ways:

QLI> /* r se in modify statement */

QLI> modify population of cities with

CON> city = ’New York’

Enter POPULATION: 10000000

.sp

QLI> /* r se in for statement */

QLI> for cities with city = ’New York’

CON> modify using population = 10000000

.sp

QLI> modify population of cities with

CON> city = ’New York’

1

modify(qli) modify(qli)

Enter POPULATION: 10000000

QLI>

SEE ALSO
assignment(qli), for (qli), begin-end(qli)

DIAGNOSTICS
See the manual page for theassignmentstatement. Seealso the discussion of errors in Chapter 1.

2

predicate(qli) predicate(qli)

NAME
predicate −specify Boolean expression

SYNTAX

predicate ::= { condition | condition and predicate |
condition or predicate | not predicate }

condition ::= { compare-condition | between-condition|
like-condition | in-condition | exists-condition | (predicate) }

DESCRIPTION
The predicateclause is used to select the records to be affected by the statement.It is used in thewhere-
clauseof thedeleteandupdatestatements and in theselect-expression.

ARGUMENTS
compare-conditionThe compare-conditiondescribes the characteristics of a single scalar expression (for
example, a missing or null value) or the relationship between two scalar expressions (for example,x is
greater thany).

Syntax: compare-condition of Predicate

{ scalar-expression comparison-operator scalar-expression |
scalar-expression comparison-operator (column-select-expression) |
scalar-expression is [not] null }

comparison-operator ::= { = | ˆ= | < | ˆ< | <= | > | >̂ | >= }

column-select-expression ::=
select [distinct] scalar-expression from-clause[where-clause]

between-conditionThebetween-conditionspecifies an inclusive range of values to match.

Format: between-condition of Predicate

database-field[not] betweenscalar-expression-1
and scalar-expression-2

like-conditionMatches a string with the whole or part of a field value. Thetest is case-sensitive.

1

predicate(qli) predicate(qli)

Format: lik e-condition of Predicate

database-field[not] lik escalar-expression

The scalar-expression usually represents an alphabetic or numeric literal, and can contain wildcard
characters. Wildcard characters are:

• The underscore, _, that matches a single character.

• The percent sign, %, that matches any sequence of characters, including none.You
should begin and end wildcard searches with the percent sign so that you match leading
or trailing blanks.

in-conditionLists a set of scalar expressions as possible values.

Format: in-condition of Pr edicate

scalar-expression [not] in (set-of-scalars)

set-of-scalars ::= { constant-commalist| column-select-expression}

column-select-expression ::=
select [distinct] scalar-expression from-clause[where-clause]

exists-conditionTests for the existence of at least one qualifying record identified by theselectsubquery.
Because theexists-condition uses the parenthesizedselect statement only to retrieve a record for
comparison purposes, it requires only wildcard (*) field selection.

A predicate containing anexists-condition is true if the set of records specified byselect-expression
includes at least one record.If you addnot, the predicate is true if there areno records that satisfy the
subquery.

Format: exists-condition of Predicate

[not] exists (select * where-clause)

EXAMPLES
The following query displays all fields fromCITIES records for which thePOPULATION field is not
missing:

QLI> select * from cities where population is not null;

The following query displays theCITY andSTATE fields from cities with populations between 100,000 and
125,000:

2

predicate(qli) predicate(qli)

QLI> select city, state from cities where population -

CON> between 100000 and 125000The following query displays all fields fromSTATES record in which theCAPITOL
field contains the string ‘‘ville’’ p receded or followed by any number of characters:

QLI> select * from states where capitol like ’%ville%’;

SEE ALSO
select-expression(qli), scalar-expression(qli), delete(qli), update (qli)

3

prepare(qli) prepare(qli)

NAME
prepare −prepare to commit transaction

SYNTAX

prepare [database-handle-commalist]

DESCRIPTION
Thepreparecommand signals your intention to commit the default transaction.

The prepare command is particularly useful for sessions that access multiple databases.It executes the
first phase of a two-phase commit.The access method polls all participants and waits for replies from each.
It checks to see that no other database activity can affect the transaction.If the statement completes
successfully, the database software guarantees that acommit statement will execute successfully if the disk
is still intact.

If you are concerned with the internal operations associated with this statement, see the

ARGUMENTS
database-handleSpecifies a name that can be used to qualify database reference when you are using
multiple databases.A prepare command without the optionaldatabase-handlereferences all open
databases. Ifyou assign a database handle when you ready the database, you can use the handle to limit the
scope of theprepare to specific databases.When you access more than one database inqli , the database
software automatically starts up separate subtransactions for each database.However, these appear to be a
single transaction.The optionaldatabase-handlelets you control these subtransactions explicitly by letting
you prepare them by database.

If you forgot to assign a database handle when you readied the database and run into a problem with a
database while you have sev eral open, do not despair;qli automatically assigns a default handle if you do
not. Type the following to find out the default database handle assigned byqli :

QLI> show databases

Database "atlas.gdb" readied as QLI_0

QLI>

Qli displays the names of all available entities, including databases and handles.The default handles are of the form ‘‘QLI_n,’’ w here

n is a numeric integer. Supply this handle as an argument to thepreparecommand:

QLI> prepare qli_1

QLI>

1

prepare(qli) prepare(qli)

EXAMPLE
The following statements ready several databases, perform some unspecified data manipulation, prepare to
commit the transaction, and then commit the transaction:

QLI> ready remote_database_1.gdb

QLI> ready local_database.gdb

QLI> ready remote_database_2.gdb

.

.

.

QLI> prepare

QLI> commit

QLI>

SEE ALSO
commit (qli)

DIAGNOSTICS
You may encounter the following message when you use thepreparestatement:

• expected database handle, encountered <string>. You need a database handle.You may have
mistyped the handle.Typeshow databasesto check the database handle.

See also the discussion of errors in Chapter 1.

2

print(qli) print(qli)

NAME
print −displaying records

SYNTAX

Standalone format:

print [format-option-commalist] [distinct]
{ rse | value-expression-commalist[usingedit-string]
[(query-header)] of rse }
[on ’filespec’ | to shell-command]

format-option :== { col integer | skip integer }
query-header:== { quoted-string-expression | - }

For loop format:

for rse
print value-expression-commalist

DESCRIPTION
Theprint statement displays fields from records in a record stream.You can create the record stream in the
print statement itself or in an outerfor statement.

ARGUMENTS
distinct Prints only unique values (or combinations) ofvalue-expression. For information about the project
relational operation, see the description of thereduce-clausein the manual pages forrse.

value-expressionof rse Specifies a list of fields or other values from the record stream created by the record
selection expression. Thevalue expressions can be formatted using anedit string. An edit string specifies
an alphabetic, numeric, or date format for a field or computed value.

1

print(qli) print(qli)

Syntax: Alphabetic and Miscellaneous Edit Strings

A Any alphabetic character.

X Any alphabetic character.

B A blank space.

"quoted string" A string to be printed in the display.
’quoted string’

Syntax: Numeric Edit Strings

9 An ordinary digit.

* A leading asterisk (for checks).

Z A leading digit, possibly blank-filled.

H Hexadecimal representation of character.

+ Leading plus sign.

- Leading minus sign.

$ Leading dollar sign.

(()) Parentheses around negative numbers.

DB Debit.

CR Credit.

. Decimal point.

B Blank space.

, Comma for thousands, millions, etc.

2

print(qli) print(qli)

Syntax: Date Edit Strings

Y (integer) The year, from right to left. For 1986,y(1) yields 6,
y(2)yields86, and so on.

M (integer) The month. The integer specifies how many of the
characters in the month name to print.

N (integer) The numeric month.The best value for the integer is
2.

D (integer) The day of the month.The best value for the integer
is 2.

W (integer) The day of the week.The integer specifies how many
of the characters in the day name to print.

B A blank space.

query-headerSpecifies whatqli prints at the head of a column.By default, it prints the field name,
stacking the constituent words of the field name to fit the space.You can specify a quoted string to be
printed, or a hyphen that suppresses the printing of a header. If the quoted string is too long for the field,
you can causeqli to stack it up specifying quoted strings separated by slashes.For example,
"query"/"header"will result in the word queryappearing directly above the word headerat the top of the
column.

col integer Specifies in which column you want qli to start printing that field.The columns in this case
refer to the screen positions on a terminal (that is, columns 1 to 80 or 132).

skip integer Specifies how many lines you wantqli to skip between rows.

on ’filespec’Sends the output to the named, quoted file, rather than writing it to your monitor.

to shell-commandSends the output to standard input of the shell command, rather than writing it to your
screen. Thesecommands typically send the output to a printer, as in print , lpr , lpt , prf , and ’prf -npag’ .
Note that if you include a switch on the shell command, you must quote the entire command.

EXAMPLE
The following query prints all records in theSTATESrelation:

QLI> /* standalone, simple format */

QLI> print states sorted by state_name

QLI> The following query prints a literal value expression:

3

print(qli) print(qli)

QLI> print "This is an utter outrage."

This is an utter outrage. The following query prints whatever you ask it to print:

QLI> print *."whatever your heart desires"

Enter whatever your heart desires: chocolate

chocolate The following query writes field values from theSTATESandSKI_AREASto the fileshush_boom.dat:

QLI> print state_name, name, city of states cross

CON> ski_areas over state on ’shush_boom.dat’The following query prints field values from records in a stream created by afor

command:

QLI> for states cross ski_areas over state

CON> print state_name, name, city The following query prints the hexadecimal representation of Albany’s altitude:

QLI> print altitude using hhhh of cities with city = ’Albany’

.sp 0.25

ALTITUDE

===========

3b The following query prints today’s date using an edit string:

QLI> print "today" using w(8)" the "dd"th of "m(12)" in the year "y(4)

Thursday the 15th of May in the year 1986 The following query prints thePOPULATION field from CITIES
using an edit string to format the number:

QLI> print city, population using z,zzz,zz9 of cities

The following commands print the numbers-1 and1 using an edit string:

QLI>

SEE ALSO
for (qli)

DIAGNOSTICS
You may encounter the following message when you use theprint statement:

• no items in print list. You must provide a record selection expression or value expression.

• Can’t open output file. Qli cannot open an output file for aprint on filespeccommand.

See also the discussion of errors in Chapter 1.

4

quit(qli) quit(qli)

NAME
quit −exiting qli

SYNTAX

quit

DESCRIPTION
Thequit command ends aqli session and commits the current transaction.

Exit , quit , and the end-of-file character are exactly equivalent. Theend-of-file characters are system-
dependent:

• Control-Z for VAX/VMS, MicroVMS, andAPOLLO DOMAIN

• Control-D for ULTRIX andSUN

EXAMPLE
QLI> quit

☞

SEE ALSO
exit (qli), commit (qli), finish (qli)

1

ready(qli) ready(qli)

NAME
ready −access database

SYNTAX

ready filespec [as database-handle]

DESCRIPTION
The ready command attaches a database and opens it for access.This command must precede other
database access inqli .

The ready command automatically starts a transaction that is not terminated until you commit it or roll it
back. Qli automatically starts a new transaction with the next data manipulation statement that follows the
commit or rollback command.

The database you access may be on another computer in the network. Sucha database is called aremote
database, and the computer where it is stored is called theremote node. The node you are using is called
the local node. If you database you access is on the same node as you are, then it is alocal database. To
access a remote database, use the full network pathname of the database file or establish a logical link to it.
Once you have readied the database, regardless of its location, you can read and write records to your
heart’s content.

ARGUMENTS
filespecSpecifies the name of the file that contains the database.The file specification can contain the full
pathname, including the name of the node on which the database is stored.

If the shell from which you invoked qli is case-sensitive, make sure that you type the name of the database
file exactly as it appears when you list the directory.

If you are in a directory other than the one that contains the database file,filespecmust include the
pathname. Ifthe database is on another node, thefilespecmust include the node name and pathname.You
can define a link or logical name for the database file.

File specifications for remote databases have the following form:

Syntax: Remote Database File Specification

1

ready(qli) ready(qli)

VMS to ULTRIX:
node-name::filespec

VMS to non-VMS and non-ULTRIX:
node-namêfilespec

Within Apollo DOMAIN:
//node-name/filespec

All Else:
node-name:filespec

For example, the following command readies a database in the directory [public.data] on nodepariah:

QLI> ready pariah:[public.data]phones.gdb

Make sure that what follows the colon is a valid file specification on the target system; use brackets,
slashes, and spaces as appropriate.

database-handleSpecifies a name that can be used to qualify database reference when you are using
multiple databases.If you do not provide a handle,qli automatically assigns one of the formqli_n, wheren
represents a positive integer.

The optionaldatabase-handlelets you work with multiple databases, accessing each when you need it and
closing each with afinish statement as appropriate.This approach saves system resources.

EXAMPLE
The following example readies a database for access:

QLI> ready atlas.gdb

The following example readies two databases for access, stating the explicit path to the database file for one
database, and providing a database handle for each:

QLI> ready /usr/igor/datafiles/atlas.gdb as atlas

QLI> ready mailing_list.gdb as mailing

.

.

.

QLI> finish atlas

QLI> The following example readies a local and a remote database:

QLI> ready pariah:[doncikov.datafiles]atlas.gdb

QLI> ready mailing_list.gdb

QLI>

2

ready(qli) ready(qli)

SEE ALSO
finish (qli)

DIAGNOSTICS
may not be able to find the database file you think you want to ready. The database file might not exist
anymore, might not have the name you specified, or might not be where you thought it was. Inany of these
cases, check the database file name and location.

may not be able to ready a remote database due to a communication problem with the remote node.If that
is the problem, make sure the remote servers are running.

You may encounter the following message when you use theready command:

• operating system directive failed
-no active servers (library/MBX manager)
-communication error with journal "journal_directory_name"

This message means that journaling has been enabled for the database you tried to ready, but no
one has started the journal.Usejour nal to start the journal.

You may encounter the following message on anAPOLLO:

• Database error: I/O error during "ms_$mapl" operation for file "dbfile" -name not found
(OS/naming server).

The database you tried to ready does not exist where you thought it did, is unavailable for some
reason, or does not exist at all. Check the pathname and try again.

See also the discussion of errors in Chapter 1.

3

rename procedure(qli) rename procedure(qli)

NAME
rename procedure −renaming a procedure

SYNTAX

rename procedureold-name[to] new-name

DESCRIPTION
Therename procedurestatement changes the name of an existing procedure.

ARGUMENTS
old-nameSpecifies the name of the procedure you want to change.

new-nameSpecifies the new name of the procedure.The procedure name can be up to 31 characters and
can contain alphabetic characters (A—Z and a—z, all stored as uppercase), numeric characters (0—9),
underscores (_), and dollar signs ($).The procedure name must start with an alphabetic character.

EXAMPLE
The following command renames a procedure:

QLI> rename procedure capitol_info to capitol_city

QLI>

SEE ALSO
See Chapter 8 of this manual for a complete discussion of procedures.See also the manual pages for
define procedure, edit procedure, anddelete procedure in this manual.

DIAGNOSTICS
You may encounter the following message when you use therename procedurestatement:

• procedure name <name> is in use.

Choose another name.

• procedure name over 31 characters.

Choose a shorter name.

• gds_$create_blob failed.

The database software could not create the field in which the procedure text is stored.Try again.

• You may get the following errors when you execute a procedure:

— procedure <name> is undefined.

The procedure does not exist as specified.Typeshow proceduresfor a list of procedures.

— Procedure <name> not found.

1

rename procedure(qli) rename procedure(qli)

The procedure does not exist as specified.Typeshow proceduresfor a list of procedures.

See also the discussion of errors in Chapter 1.

2

repeat(qli) repeat(qli)

NAME
repeat −repeat a statement

SYNTAX

repeat integer-expression qli-statement

DESCRIPTION
Therepeatcommand lets you execute aqli statement multiple times.

If you want to include a procedure in arepeat command, enclose it in abegin-endstatement. Otherwise,
only the first statement in the procedure will be repeated.

If, at any time during the repeated operations, you decide to stop, type the end-of-file character (system-
dependent).Qli then stops whatever it is doing and displays the following message:

Error: execution terminated by signal

Qli does not complete the operation that was interrupted.For example, suppose you decide to store five
new SKI_AREAS. After storing two records, you begin providing the values for the third.However, you
make a mistake while typing the value of the second field for the third record.You type the end-of-file
character. Qli stores the first two records, but does not store the third record.

ARGUMENTS
integer-expressionSpecifies the number of repetitions.If integer-expressionis not an integer, qli truncates
the fractional part.The token integer-expressiondoes not have to be a literal; instead, it can be a prompting
expression.

qli-statementAny of the qli statements listed in Chapter 1.You can intermix theGDML andSQL variants
of qli in a repeat command. However, as always, you cannot include aGDML statement in aSQL
statement or vice versa.

EXAMPLE
The following example specifies that thestore command is to be repeated five times, thereby causingqli to
prompt for field values for five records:

QLI> repeat 5 store ski_areas

.

.

.

QLI> The following statement prompts for the number of repetitions:

1

repeat(qli) repeat(qli)

QLI> repeat *.’number of items’

CON> store ski_areasThe following statement repeats a procedure five times:

QLI> repeat 5 begin :procedure end

.

.

.

QLI>

SEE ALSO
See Chapter 1 for a list of statements.

DIAGNOSTICS
See the discussion of errors in Chapter 1.

2

report(qli) report(qli)

NAME
report −writing reports

SYNTAX

report rse [on ’filespec’ | to shell-command]
[set report_name =value-expression]
[set columns =n]
[set lines = n]
[at top of report [print] value-expression]
[at bottom of report [print] value-expression]
[at top of page [print] value-expression]
[at top of database-fieldprint value-expression]...
[at bottom of database-fieldprint value-expression]...
end_report [on ’filespec’ | to shell-command]

DESCRIPTION
Thereport command invokes qli ’s report writer.

ARGUMENTS
rseCreates the record stream to be reported.

on ’filespec’Sends the output to the named, quoted file, rather than writing it to your monitor. This clause
can appear immediately after thereport statement or after theend_report statement.

to shell-commandSends the output to standard input of the shell or command interpreter command, rather
than writing it to your screen.These commands typically send the output to a printer, as in print , lpr , lpt ,
prf , and ’prf -npag’ . Note that if you include a switch on the shell command, you must quote the entire
command. Thisclause can appear immediately after thereport statement or after theend_report
statement.

set report_name =value-expressionNames the report.

set columns =n Specifies the width in mono-spaced characters for the output device. Reportsprinted on
standard U.S. (8-1⁄2 by 11 inch) or European (A4) paper should not exceed 75 columns.

set lines =n Specifies the length in lines of the report.Reports printed on standard U.S. (8-1⁄2 by 11 inch)
or European (A4) paper should not exceed 60 lines in length.

at top of report print value-expressionSpecifies a title to be printed at the beginning of the report.

at top of page printvalue-expressionSpecifies a title to be printed at the top of every page.

1

report(qli) report(qli)

at bottom of page printvalue-expressionSpecifies a title to be printed at the bottom of every page.

at bottom of report print value-expressionSpecifies a title to be printed at the end of the report.

at top of database-fieldprint value-expressionProvides a control break and the title to print for that break.
Therse for the report must include thedatabase-fieldas a sort field.

at bottom of database-fieldprint value-expression Provides a summary of a control group and an
expression to print for that break.Typically, the at bottom matches anat top and calculates a total or
aggregate expression for the control group.

EXAMPLE
The following statements report on records in theCITIES relation with control breaks by state:

QLI> report cities with population not missing sorted by state

CON> set columns = 75

CON> set lines = 55

CON> set report_name = ’C I T I E SB Y S T A T E’

CON> at top of state print state

CON> print city, population, altitude, latitude, longitude

CON> end_report

QLI>

SEE ALSO
See Chapter 9 for a discussion of writing reports inqli .

DIAGNOSTICS
See the discussion of errors in Chapter 1.

2

restructure(qli) restructure(qli)

NAME
restructure −move data from relation to relation

SYNTAX

[database-handle.]relation-name= rse

DESCRIPTION
The restructure statement lets you copy data from one relation to another and/or from one database to
another. Qli automatically matches up fields and copies values from the older relation to the newer one.

See Chapter 5 for a discussion of restructuring databases.

ARGUMENTS
database_handle.relation_nameSpecifies the relation to which you want to assign values. Theoptional
database handle is useful if you are using multiple databases with overlapping relation names.

rseCreates a record stream that serves as the source of values forrelation-name.

EXAMPLE
The following example assumes that you have defined a new relation, CITY_STATES, that includes only
cities with populations greater than 500,000.The new relation includes fields from both theCITIES and
STATESrelations.

QLI> city_states = cities cross states over state with population > 500000

SEE ALSO
assignment(qli)

DIAGNOSTICS
See the discussion of errors in Chapter 1.

1

rollback(qli) rollback(qli)

NAME
rollback −undo changes made during transaction

SYNTAX

rollback [database-handle-commalist]

DESCRIPTION
The rollback command ends a transaction and undoes all changes made to the database since the most
recent transaction started.

A rollback command without the optionaldatabase-handleaffects all open databases.It causes the
database software to undo all changes to data and metadata.rollback also flushes all modified buffers and
closes any record streams that are open.

If you assign a database handle when you ready the database, you can use the handle to limit the effect of
the rollback to specific databases.When you access more than one database inqli , the database software
automatically starts up separate subtransactions for each database.However, these appear to be a single
transaction. Theoptionaldatabase-handlelets you control these subtransactions explicitly by letting you
commit or roll back transactions by database.

If you forgot to assign a database handle when you readied the database and run into a problem with a
database while you have sev eral open, do not despair;qli assigns a default handle if you have not specified
one. Type the following to find out the default database handle assigned byqli :

QLI> show databases

Database "atlas.gdb" readied as QLI_0

QLI>

Qli displays the names of all available entities, including databases and handles.The default handles are of the form ‘‘QLI_n,’’ w here

n is a numeric integer. Supply this handle as an argument to therollback command:

QLI> rollback qli_0

QLI>

EXAMPLE
The following example performs some unspecified data manipulation activities and then undoes the
changes, thus not writing them to the database:

QLI> ready atlas.gdb

.

.

.

QLI> rollback

1

rollback(qli) rollback(qli)

SEE ALSO
commit (qli), finish (qli), prepare (qli)

DIAGNOSTICS
A rollback cannot permitted to fail.

2

rse(qli) rse(qli)

NAME
rse −search condition and other activities

SYNTAX

[first-clause] record-source[with-clause] [reduced-clause] [sorted-clause]

record-source::= { relation-clause| cross-source}

relation-clause::= [context-variable in] relation-name

cross-source::= relation-clausecrossrecord-source

DESCRIPTION
Therse (record selection expression) clause specifies the search and delivery conditions for record retrieval.

ARGUMENTS
first-clauseLimits the records in a stream to the number you specify with an integer. The format of the
first-clausefollows:

Syntax: first-clause of RSE

first integer

Qli truncates any fractional portion of the integer. Unless you sort the record stream when you use thefirst-
clause, the firstn records are returned in random order.

relation-clauseIdentifies the target relation.The format of therelation-clausefollows:

Syntax: relation-clause of RSE

[context-variablein] [database-handle.]relation-name

The optionalcontext-variable is used for name recognition, and is associated with a relation.A context
variable can contain up to 31 alphanumeric characters, dollar signs ($), and underscores (_).However, it
must start with an alphabetic character.

Qli is not sensitive to the case of the context variable. For example, it treatsC andc as the same character.

The optionaldatabase-handleidentifies the database for multiple database access.

cross-clausePerforms a join operation.The format of thecross-clausefollows:

1

rse(qli) rse(qli)

Syntax: relation-clause of RSE

crossrelation-clause[over field-name-commalist]

Thecross-clausecreates dynamic relationships by matching up records from two or more different relations
in the same database.The relationship can be based on the equality of common fields (equijoin),
inequalities (non-equijoin), or where no relationship exists (cross product).Unlike most otherrse clauses,
cross-clausecan be repeated to include as many relations as are necessary.

Theover clause is semantically equivalent to awith-clausethat equates a field in one relation with a field in
another. The field-namemust be exactly the same in both relations.Otherwise, you must use thewith-
clause, even if both fields are based on the same field.

with-clauseSpecifies a search condition or combination of search conditions.The format of thewith-
clausefollows:

Syntax: with-clause of RSE

with boolean-expression

When you pass the search conditions to the access method, it evaluates the condition for each record that
might possibly qualify. Conceptually, performs a record-by-record search, comparing the value you
supplied with the value in the database field you specified.If the two values are in the relationship
indicated by the operator you specified (for example, equals), the search condition evaluates to ‘‘true’’ and
that record becomes part of the record stream.The search condition can result in a value of ‘‘true,’’
‘‘ false,’’ o r ‘‘missing’’ f or each record.

reduced-clausePerforms a project operation, retrieving only the unique values for a field.The format of
thereduced-clausefollows:

Syntax: reduced-clause of RSE

reduced[to] dbfield-expression-commalist

dbfield-expression::= [context-variable.]field-name

When you ask for a record stream projected on a field, the access method considers a list of fields and
eliminates records that do not have a unique combination of values for the listed fields.

sorted-clauseOrders the output, returning the record stream sorted by the values of one or more sort keys.
The format of thesorted-clausefollows:

2

rse(qli) rse(qli)

Syntax: sorted-clause of RSE

sorted [by] sort-key-commalist

sort-key::= [ascending| descending] dbfield-expression

dbfield-expression::= [context-variable.]field-name

You can sort a record stream alphabetically, numerically, by date, and by any combination of these.The
sort-clauselets you have as many sort keys as you want.

Each sort key can specify whether the sorting order of the sort key is ascending(the default order for the
first sort key) or descending. The sorting order is ‘‘sticky’’; that is, if you do not specify whether a
particular sort key is ascendingor descending, the database software assumes that you want the order
specified for the most recent key. Therefore, if you list several sort keys, but only include the keyword
descendingfor the first key, the database software sorts all keys in descending order.

EXAMPLES
The following query uses afirst-clause, a relation-clause, and a sorted-clauseto display the two
‘‘ youngest’’ states:

QLI> for first 2 states sorted by descending statehood

CON> print state_name | ’was admitted to the Union on’ | statehoodThe following query uses two relation-clauses, across-

clause, and asorted-clauseto list a ski area, city, and state in which it is located:

QLI> for s in states cross ski in ski_areas over state

CON> print ski.name, ski.city, s.state_nameThe following query does the same thing as the preceding query, but uses an explicitly

qualified join condition in place of thecrossshortcut:

QLI> for s in states cross ski in ski_areas with

CON> s.state = ski.state

CON> print ski.name, ski.city, s.state_nameThe following query uses areduced-clauseto list the states in which there are ski

areas:

QLI> print ski_areas reduced to state

The following query uses awith-clauseto limit the disply to only those cities in Texas for which the value
of thePOPULATION field is not missing:

QLI> for cities with state = ’TX’ and population not missing

CON> print city, population, altitudeThe following query displays the names of cities that are larger than the capitols of their

3

rse(qli) rse(qli)

states:

. gdml_171a.epas

QLI> for s in states cross c in cities over state cross

CON> cs in cities with cs.state = c.state and

CON> cs.city = s.capitol and

CON> cs.population < c.population

CON> sorted by s.state, c.city

CON> print c.city, s.state_name, ’ i s larger than ’, s.capitolThe following statement displays only the names of states in which the

capitol is not the largest city:

QLI> for s in states cross c in cities over state cross

CON> cs in cities with cs.state = c.state and

CON> cs.city = s.capitol and

CON> cs.population < c.population

CON> sorted by s.state

CON> reduced to s.state, s.capitol

CON> print s.state_name, ’ contains cities larger than ’, s.capitol

SEE ALSO
boolean-expression(qli), value-expression(qli)

4

scalar-expression(qli) scalar-expression(qli)

NAME
scalar-expression −calculating value

SYNTAX

scalar-expression ::= [+ | -] scalar-value [arithmetic-operator scalar-expression]

scalar-value ::= { field-expression | constant-expression | (scalar-expression) }

arithmetic-operator ::= { + | - | * | / | | }

DESCRIPTION
The scalar-expression is a symbol or string of symbols used in predicates to calculate a value. The
database software uses the result of the expression when executing the statement in which the expression
appears.

You can add (+), subtract (-), multiply (*), and divide (/) scalar expressions. Arithmeticoperations are
evaluated in the normal order. You can use parentheses to change the order of evaluation.

The concatenation operator (|) is a formatting convenience. For example, if yourselect command
includes a list of value expressions separated by commas,qli displays the field values in columnar order,
padding out things like varying string fields with blanks.However, you can use the concatenation operator
and constants to print a more legible display.

ARGUMENTS
field-expressionReferences a database field.The format of thefield-expressionfollows:

Syntax: field-expression of Scalar Expression

[relation-name. | view-name. | alias.]database-field

The optionalrelation-name, view-name, or alias, each followed by a required period (.), specifies the
relation, view, or alias (synonym for a relation or view) in which the field is located.The alias is assigned
to a relation or a view in aselect-expression.

constant-expressionA string of ASCII digits interpreted as a number or as a string ofASCII characters. The
format of theconstant-expressionfollows:

1

scalar-expression(qli) scalar-expression(qli)

Syntax: constant-expression Scalar Expression

{ integer-string | decimal-string | float-string | ascii-string }

Integer numeric strings are written as signed or unsigned decimal integers without decimal points.For
example, the following are integers:-14, 0, 9, and +47.

Decimal numeric strings are written as signed or unsigned decimal integers with decimal points.For
example, the following are decimal strings:-14.3, 0.021,9.0, and +47.9.

Floating numeric strings are written in scientific notation (that is,E-format). A number in scientific
notation consists of a decimal string mantissa, the letterE, and a signed integer exponent. For example, the
following are floating numerics:7.12E+7and7.12E-7.

Character strings are written usingASCII printing characters enclosed in single (’) or double (") quotation
marks. ASCII printing characters are:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Blank space and tab

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] { } < > ; : ’ " \ | / ? . ,

EXAMPLES
The following query displays all fields from theCITIES record that represents Boston:

QLI> select * from cities where city = ’Boston’

The following query displays selected fields from the same record:

QLI> select population, altitude, latitude, longitude -

CON> from cities where city = ’Boston’ The following query displays selected fields fromCITIES with a population greater
than 1,000,000:

QLI> select city, state, population from cities -

CON> where population > 1000000The following query joins records from theCITIESandSTATESrelations:

QLI> select c.city, s.state_name from cities c, states s -

CON> where s.state = c.state

2

scalar-expression(qli) scalar-expression(qli)

SEE ALSO
predicate(qli)

3

select(qli) select(qli)

NAME
select −selecting records

SYNTAX

select-statement::= select-expression [ordering-clause]

ordering-clause::= order by sort-key-commalist

sort-key ::= { asc | desc } { database-field| integer }

DECRIPTION
The selectstatement finds the record(s) of the relations specified in thefr om clause that satisfy the given
search condition.

ARGUMENTS
select-expressionSpecifies the selection criteria.See the manual page forselect-expression.

ordering-clauseReturns the record stream sorted by the values of one or moredatabase-fields.

You can sort a record stream alphabetically, numerically, by date, and by any combination of these.The
ordering-clauselets you have up to 40 sort keys.

Each sort key can specify whether the sorting order of the sort key is asc(the default order for the first sort
key) or desc. The sorting order is ‘‘sticky’’ that is, if you do not specify whether a particular sort key is asc
or desc, it is assumed that you want the order specified for the most recent key. Therefore, if you list
several sort keys, but only include the keyword descfor the first key, the database software sorts all keys in
descending order.

EXAMPLE
The following query returns cities in Massachusetts:

QLI> select city, state, population

CON> from cities where state = ’MA’; The following query includes anordering-clausewith two sort keys:

QLI> select city, state, population -

CON> from cities where state = ’MA’ order by -

CON> city, state; The following example joins the relationsCITIES andSTATESon the basis of the equality of values
in STATE:

QLI> select c.city, c.population, s.state_name, -

CON> from cities c, states s where -

CON> c.state = s.state order by s.state

1

select(qli) select(qli)

SEE ALSO
select-expression(qli)

DIAGNOSTICS
You may encounter the following message when you use theselectstatement:

• no items in print list. You must provide something to print.

See also the discussion of errors in Chapter 1.

2

select-expression(qli) select-expression(qli)

NAME
select-expression −selecting records

SYNTAX

select-clause[where-clause]

DESCRIPTION
Theselect-expressionspecifies the search and delivery conditions for record retrieval.

ARGUMENTS
select-clauseLists the fields to be returned and the source relation or view. The format of theselect-clause
follows:

Syntax: select-clause of Select Expression

select[distinct] scalar-expression-commalist
fr om from-item-commalist

from-item::= relation-name[alias]

The optional keyword distinct specifies that only unique values are to be returned.The database software
considers the values in thescalar-expressionlist and returns only one set value for each group of records
that meets the selection criteria, and that have duplicate values for thescalar-expression.

The optionalalias is used for name recognition, and is associated with a relation.An alias can contain up
to 31 characters alphanumeric characters, dollar signs ($), and underscores (_).However, it must start with
an alphabetic character. Qli is not sensitive to the case of the alias.For example, it treatsC andc as the
same character.

where-clauseSpecifies search conditions or combinations of search conditions.The format of thewhere-
clausefollows:

1

select-expression(qli) select-expression(qli)

Syntax: where-clause of Select Expression

wherepredicate

When you specify a search condition or combination of conditions, the condition is evaluated for each
record that might qualify .Conceptually, the database software performs a record-by-record search,
comparing the value you supplied with the value in the database field you specified.If the two values
satisfy the relationship you specified (for example, equals), the search condition evaluates to ‘‘true’’ and
that record becomes part of the active set. Thesearch condition can result in a value of ‘‘true,’’ ‘‘ false,’’ o r
‘‘ missing’’ f or each record.Such a statement, in which the choice is between the truth or falsity of a
proposition, is called a ‘‘Boolean test’’ and is expressed by apredicate. See the manual page forpredicate.

EXAMPLES
The following query projects theSKI_AREASrelation on theSTATE field:

QLI> select distinct state from ski_areas;

The following query returnsCITIES records for which thePOPULATION field is not missing:

QLI> select city, state, population from cities -

CON> where population is not nullThe following query joins two relations on theSTATE field for cities whose population
is not missing:

QLI> select c.city, s.state_name from cities c, states s -

CON> where c.state = s.state and c.population not missing

SEE ALSO
predicate(qli), scalar-expression(qli), select(qli)

2

set(qli) set(qli)

NAME
set −toggling options

SYNTAX

set [no] { blr | semicolon | statistics }

DESCRIPTION
Thesetcommand lets you change various environmental features ofqli .

ARGUMENTS
blr Displays thebinary language representation, or BLR, of the query before displaying the results of the
query.

You can use theblr switch to develop programs that use the call interface. For example, you can develop
queries usingqli , take the generated requests, and modify them as needed by your application.However,
qli first parses the query for syntactic accuracy before sending off the request.If there is an error in your
query, qli displays the appropriate error message and does not generate any BLR.

semicolonChangesqli ’s line continuation behavior. Without thesemicolonoption set, you must break a
command in the middle of a clause or at a comma, or use a hyphen. With semicolonset,qli does not
execute a command until it encounters a semicolon.When you turn off this option, be sure that you type
the semicolon at the end of the command:

QLI> set no semicolon;

statisticsDisplays system statistics after executing a query. You receive statistics on the following:

Number of read requests
Number of write requests
Number of requests for data which may be serviced in cache
Number of requests for updates which may be serviced in cache
Elapsed time
CPU time
Memory usage
Database page size
Database buffers used

EXAMPLE
The following commands set theblr switch and execute a query:

QLI> set blr

QLI> print states

1

set(qli) set(qli)

< display of STATES records >

0000 blr_version4,

< BLR for query is printed >

QLI> The following commands set thestatisticsswitch and execute a query:

QLI> set statistics

QLI> print city, state of first 2 cities

< display of first 2 CITIES records >

Statistics for database "atlas.gdb"

reads = 2 writes = 0 fetches = 7 marks = 0

elapsed = 0.06 cpu = 0.05 mem = 55296

QLI>

SEE ALSO
show (qli)

DIAGNOSTICS
You may encounter the following message when you use thesetcommand:

• expected set option, encountered "invalid-option". Qli did not recognize thesetoption you chose.
Check theSyntaxsection above for the supported option.

See also the discussion of errors in Chapter 1.

2

shell(qli) shell(qli)

NAME
shell −executing shell commands

SYNTAX

shell [’ shell-command’]

DESCRIPTION
The shell command lets you execute shell commands from theqli environment. Thiscommand is
supported only forULTRIX, SUN, andDOMAIN environments. Usethespawncommand onVMS systems.

ARGUMENTS
´shell-commandÁ shell command enclosed in single (’) or double (") quotation marks.

If you do not issue a shell command,qli puts you in a shell.Type the end-of-file character to escape from
the shell back toqli .

EXAMPLE
The following command escapes fromqli and deposits you in a shell:

QLI> shell ’sh’

☞ Type the end-of-file character to return to qli .

The following command checks the time from withinqli :

QLI> shell ’date’

Tue Apr 23 13:54:22 EDT 1986

QLI>

SEE ALSO
spawn(qli)

DIAGNOSTICS
You may encounter the following message when you use theshellcommand:

• ?(sh) "string" - name not found (OS/naming server). The string you typed was not a command
understood by the shell.

See also the discussion of errors in Chapter 1.

1

show(qli) show(qli)

NAME
show −display information

SYNTAX

show { all | database-handle| databases| fields |
[procedure] procedure-name| procedures | relations |
relation-name | system [relations] | variables | version }

DESCRIPTION
Theshow command displays information.

If the show command references anything other than one of the listed options,qli assumes that you mean a
procedure and looks for a procedure with that name.If it cannot find a procedure with that name,qli
returns a message that the procedure was not found.

ARGUMENTS
all Displays the file specification and handle for all readied databases, relation name, and field names and
datatype for each relation.

database-handleDisplays everything about the named database.The handle must have been assigned in
theready statement, or may have been assigned automatically byqli .

databasesDisplays the file specification and handle of all readied databases.

fields [for relation-name] Displays all fields and datatypes for each relation in a readied database.If you
specify arelation-name, it displays the fields and datatypes for the named relation.

procedure-nameDisplays the file specification of the database whereprocedure-nameis stored and the text
of the procedure.

This option is essentially the default. If you askqli to show you something it does not understand,qli
assumes that the desired item is a procedure.

proceduresDisplays the names of procedures for all readied databases.

relation-nameDisplays the field names and datatypes for the specified relation.

relations Displays the names of relations for each readied database.

system[relations] Displays the names of the system relations for each readied database.

variables Displays the names of declared variables.

1

show(qli) show(qli)

version Displays release information aboutqli and the access method being used.

EXAMPLE
The following commands ready a database and then ask for information about all entities in the database:

QLI> ready atlas.gdb

QLI> show all

< display of all metadata information for readied database > The following command asks for version

information:

QLI> show version

QLI, version "APL1.0F"

Version(s) for database "atlas.gdb"

< version information follows >

QLI>

DIAGNOSTICS
You may encounter the following messages when you use theshow command:

• No databases are currently ready.

Qli cannot display anything because there is nothing to display. Ready a database and try the
command again.

• Procedure <procedure-name> not found.

Qli could not find a procedure with the name you typed.Type show procedures for a list of
procedures. Likewise, if you reference a relation from a database other than the one(s) you have
readied,qli assumes that the relation name is a procedure name.If it cannot find a procedure with
that name,qli returns a message that the procedure was not found.

See also the discussion of errors in Chapter 1.

2

show(qli) show(qli)

3

spawn(qli) spawn(qli)

NAME
spawn −creating subprocess

SYNTAX

spawn

DESCRIPTION
The spawn command lets you ‘‘escape’’ f rom qli to aVMS subprocess. Whenyou are finished withDCL
commands, log out of the subprocess to return toqli .

EXAMPLE
The following command escapes fromqli and deposits you atDCL level:

QLI> spawn

$ Logout to return toqli .

DIAGNOSTICS
See the discussion of errors in Chapter 1.

1

store(qli) store(qli)

NAME
store −insert new record

SYNTAX

store relation-name [using assignment-statement]

DESCRIPTION
Thestorestatement inserts a new record into a relation.

Chapter 5 discusses assignment statements in detail.

ARGUMENTS
relation-nameSpecifies the relation into which you want to store a new record. If you specify only
relation-namewithout an assignment,qli prompts you for field values.

assignment-statementA qli assignmentstatement.

If you specifyrelation-nameandusing, you can make assignments to fields usingassignment-statement. In
this case, you need thebegin-end command if there is more than one field to which you must assign a
value.

EXAMPLE
The following example stores a record usingqli ’s automatic prompting:

QLI> store ski_areas

Enter NAME: Reedy Run

Enter TYPE: N

Enter CITY: Groton

Enter STATE: MA

QLI> The following example stores a record, but uses abegin-endstatement to structure a compound statement for assigning values

to each field:

QLI> store ski_areas

CON> begin

CON> name = ’Moose Pond’

CON> type = ’N’

CON> city = ’Dixville Notch

CON> state = ’NH’

CON> end

QLI>

1

store(qli) store(qli)

SEE ALSO
See Chapter 5 for a discussion of assignments.See also the manual pages forassignmentandbegin-endin
this manual.

DIAGNOSTICS
See the manual page for theassignmentstatement. Seealso the discussion of errors in Chapter 1.

2

then(qli) then(qli)

NAME
then −sequencing statements

SYNTAX

qli-statementthen qli-statement

DESCRIPTION
Thethen statement lets you sequenceqli statements.

ARGUMENTS
qli-statementAny of the statements listed in Chapter 1 or a procedure.

EXAMPLE
The following example modifies a field value in several records, but displays each record before prompting
for a new field value:

QLI> for ski_areas with state = ’VT’

CON> print then modify type

DIAGNOSTICS
You may encounter the following message when you use thethen statement:

• expected statement, encountered "command". You cannot use a command with thethen
statement.

See also the discussion of errors in Chapter 1.

1

update(qli) update(qli)

NAME
update −modify field value

SYNTAX

update relation-name
setassignment-commalist
[wherepredicate]

assignment::= database-field= scalar-expression

DESCRIPTION
Theupdatestatement changes the values of one or more fields in a record in a relation.

ARGUMENTS
relation-nameSpecifies the relation that contains the record you want to update.

assignmentAssigns thescalar-expressionto database-field.

predicateSelects the record to modify. If you provide a search condition with the optionalwhere-clauseof
thepredicate, updates the listed fields in the record(s) selected fromrelation-name. If you do not provide a
search condition, updates all records inrelation-name.

EXAMPLES
The following statement modifies the altitude of all cities:

QLI> update cities set altitude = altitude - 10

The following statement modifies the altitude of all cities in California and Washington:

QLI> update cities -

CON> set altitude = altitude - 100 -

CON> where state in ("CA", "WA"); The following statement elevates all cities in New York and changes the state code to ‘‘NA’’

(New Amsterdam):

QLI> update cities -

CON> set altitude = altitude * 1.1, state = ’NA’ -

CON> where state = ’NY’

SEE ALSO
predicate(qli), select(qli)

1

update(qli) update(qli)

DIAGNOSTICS
See the manual page for theassignmentstatement. Seealso the discussion of errors in Chapter 1.

2

value-expression(qli) value-expression(qli)

NAME
value-expression −calculating value

SYNTAX

value-expression ::= { arithmetic-expression | dbfield-expression |
first-expression | numeric-literal-expression |
quoted-string-expression | running-expression |
statistical-expression | (value-expression) |
- value-expression }

DESCRIPTION
Thevalue-expressionis a symbol or string of symbols from which the database software calculates a value.
The database software uses the result of the expression when executing the statement in which the
expression appears.

ARGUMENTS
arithmetic-expressionCombines value expressions and arithmetic operators.The format of thearithmetic-
expressionfollows:

Syntax: arithmetic-expression Value Expression

value-expression-1{ + | - | * | / | | } value-expression-2

You can add (+), subtract (-), multiply (*), and divide (/) value expressions in assignment statements.
Arithmetic operators are evaluated in the normal order. Use parentheses to change the order of evaluation.

You can use the concatenation operator (|) to combine field values in record selection expressions.

dbfield-expressionReferences database fields.This expression can occur in several clauses ofrse and
boolean-expression. The format of thedbfield-expressionfollows:

Syntax: dbfield-expression Value Expression

[context-variable.]field-name

The optionalcontext-variable lets you qualify the database field for multi-relation operations.You must
declare a context variable for a relation in therelation-clauseof the record selection expression.

first-expressionForms a record stream and evaluates an expression. Theformat of thefirst-expression
follows:

1

value-expression(qli) value-expression(qli)

Syntax: first-expression Value Expression

first value-expression-1fr om rse
[elsevalue-expression-2]

The database software finds the first qualifying record in the record stream.If the stream is empty, it
returns an error unless you supply anelse clause. Otherwise,the database software evaluates value-
expression-2in the context of the record it found.The result of the evaluation is returned as the value of
first-expressionor the value specified in theelseclause.

If you use thefirst-expressionin a print command, you must enclose it in parentheses.Otherwise,qli
assumes that you are using thefirst-clauseof the record selection expression.

numeric-literal-expressionRepresents a decimal number as a string of digits with an optional decimal
point. Theformat of thenumeric-literal-expressionfollows:

Syntax: numeric-literal-expression Value Expression

[+ | -] string[.string]

quoted-string-expressionA string of ASCII characters enclosedin single (’) or double (") quotation marks.
The format of thequoted-string-expressionfollows:

Syntax: quoted-string Value Expression

"string"

ASCII printing characters are:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] { } < > ; : ’ " \ | / ? . ,

running-expressionCalculates a running count for a record stream or a running total for an expression. The
format of therunning-expressionfollows:

2

value-expression(qli) value-expression(qli)

Syntax: running Value Expression

{ running count | running total value-expression}

statistical-expressionCalculates a value based on a value expression. Theformat of thestatistical-
expressionfollows:

Syntax: statistical-expression Value Expression

{ statistical-operation value-expressionof rse |
countof rse }

statistical-operation ::= { av erage | max | min | total }

If a field value included invalue-expressionis missing for a record, that record is not included in the
calculation. For av erage, max, and min, if the record stream created byrse is empty, the value of the
statistical expression is missing.For total andcount, if the record stream is empty, the total is 0.

EXAMPLES
The following statement usesdbfield-expressions to display the city and state, anarithmetic-expressionthat
calculates and displays the altitude in meters, anumeric-literal-expression(0.3048) used in the arithmetic
operation, and two quoted-string-expressions:

QLI> for c in cities cross s in states over state

CON> print c.city, s.state_name | ’ is situated at ’ |

CON> c.altitude * 0.3048 | ’ meters above sea level.’

SEE ALSO
boolean-expression(qli), rse (qli)

3

