
define database(ddl) define database(ddl)

NAME
define database −create a database

SYNTAX

define databasequoted-filespec[{ textual commentary}] [security_classclass-name];

DESCRIPTION
Thedefine databasestatement provides the name for the database to be created.

Thedefine databasestatement must be the first statement in the source file or input togdef.

ARGUMENTS
quoted-filespecA valid file specification enclosed in single (’) or double (") quotation marks.If the shell
you regularly use is case-sensitive, make sure that you always reference the database file exactly as it is
spelled in thedefine databasestatement.

The file specification can contain the full pathname to another node in the network. Filespecifications for
remote databases have the following form:

Syntax: Remote Database File Specification

VMS to ULTRIX:
node-name::filespec

VMS to non-VMS and non-ULTRIX:
node-namêfilespec

Within Apollo DOMAIN:
//node-name/filespec

All Else:
node-name:filespec

{ textual commentary} Stores the bracketed comments about the database in the database.The
commentary can include any of the following ASCII characters:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Blanks, tabs, and carriage returns

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] < > ; : ’ " \ | / ? . ,

1

define database(ddl) define database(ddl)

class-nameAssociates a security class with the database.See the entry fordefine security_class
in this chapter for more information.

EXAMPLE
The following statements each appear as the first statement in a source file used to define a database:

define database "/gds/examples/atlas.gdb"

.sp

define database "atlas.gdb";

.sp

define database "/usr/jimbo/boats.gdb"

{ the ubiquitous test database }

security_class lmu;

.sp

define database "/usr/igor/datafiles/atlas.gdb";

SEE ALSO
See Chapter 4 in this manual.See also the entries in this chapter for:

• gdef

• define security_class

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

2

define field(ddl) define field(ddl)

NAME
define field −define a field

SYNTAX

define field field-name datatype field-attributes;

DESCRIPTION
Thedefine fieldstatement describes the characteristics of a new field for later inclusion in a relation.

You can also define fields in relations.See the entries fordefine relation and modify relation in this
chapter for more information.

To disallow duplicate values for a field, define an index for the field in the relation and use theunique
option. Seethe entry fordefine indexin this chapter for more information about defining indexes.

ARGUMENTS
field-nameNames the field you want to create.A field name can contain up to 31 alphanumeric characters,
dollar signs ($), and underscores (_).However, it must start with an alphabetic character.

datatypeSpecifies the field’s datatype. Thedatatype specification must precede other field attributes and
descriptive comments. For detailed information about supported datatypes, see the entry forfield-attributes
in this chapter.

field-attributesSpecifies the length or scale if appropriate, and several optional field characteristics.You
can include a textual description of the field, an explicit missing value, a query name, and a validation
expression.

For detailed information about optional attributes, see the entry forfield-attributesin this chapter.

EXAMPLE
The following statements define fields:

. tcs?

define field tolerance long scale -2;

.sp

define field blurb blob sub_type text

stream segment_length 60

{ text for catalogue article };

.sp

define field manufacturer char[10]

valid if

(manufacturer ne "SLEAZOLA" and

manufacturer ne "SHODTECH" and

1

define field(ddl) define field(ddl)

manufacturer ne "SCHLOKHAUS")

{ add bad suppliers as necessary }

missing_value is "N/A";

.sp

define field price float

valid if

(price > 0 or

price missing)

missing_value is -1.99;

.sp

define field part_number char[5];

SEE ALSO
See Chapters 4 and 5 in this manual.See also the entries in this chapter for:

• field-attributes

• define relation

• modify relation

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

2

define index(ddl) defineindex(ddl)

NAME
define index −create an index

SYNTAX

define index index-name [for] relation-name
[unique] [{ textual-commentary}]
field-name-commalist;

DESCRIPTION
The define index statement defines an index for a relation. You must define a relation before you can
create an index for it.

automatically maintains all indexes. You do not have to reference an index when you access data—the
access method does it automatically.

ARGUMENTS
index-nameNames the index you want to create.An index name can contain up to 31 alphanumeric
characters, dollar signs ($), and underscores (_).However, it must start with an alphabetic character.

relation-nameSpecifies the relation for which you are defining the index.

unique Disallows duplicate values in the index.

Try to index on fields used asprimary keys, such as unique identification numbers, part numbers, employee
numbers, social security numbers (although social security numbers are not reliably unique and, by law,
should not be used for identification purposes), and so on.You can define a unique index by specifying the
optional keyword unique. If you do so, the values forfield-nameor combinations offield-names must then
be unique.If you try to store a value that already exists, the assignment operation fails.

If you create a multi-segment index, you should first consider which of the key fields is likely to have the
unique values. Having done so, you should list thefield-names in descending order by uniqueness Such
ordering improves index compression.

{ textual-commentary} Stores the bracketed comments about the relation in the database.The commentary
can include any of the following ASCII characters:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Blanks, tabs, and carriage returns

1

define index(ddl) defineindex(ddl)

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] < > ; : ’ " \ | / ? . ,

field-nameSpecifies one or more fields fromrelation-namethat will be indexed.

You can create a single or multi-segment index for a relation.A single-segment index consists of a single
field, while a multi-segment index consists of two or more fields. In both cases, you should avoid indexing
a field that has few unique values. Suchindexes provide little performance improvement and can reduce
update performance.Finally, because of the nature of the blob datatype, you cannot index a blob field.

EXAMPLE
The following statements define relations and some indexes for them:

. tcs?

define relation states

.

.

.

define relation cities

.

.

.

define index state_idx1 for states

unique state;

.sp

define index state_idx2 for states

unique state, state_name;

.sp

define index river_idx1 for rivers

unique { speed access and

eliminate duplicates }

river;

.sp

define index rivstat_idx1 for river_states

unique river, state;

SEE ALSO
See the entries in this chapter for:

• gdef

• delete

2

define index(ddl) defineindex(ddl)

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

3

define relation(ddl) define relation(ddl)

NAME
define relation −define a relation

SYNTAX

define relation relation-name
[{ textual-commentary}]
[security_classclass-name]
field-description-commalist;

field-description::= { included-field| new-field | renamed-field| computed-field}

DESCRIPTION
Thedefine relation statement creates a relation.A relation can consist of:

• Included fields.Such fields are defined in previousdefine fieldor define relation statements, and
can have optionally specified local attributes. Thelocal attributes are described at length in the
entry forfield-attributesin this chapter.

Syntax: included-field

field-name[local-attributes]

local-attributes::= { comments| edit-string| query-name|
security-class| position n }

If you specify a local attribute that conflicts with the attribute defined in the field definition, the
local attribute overrides the global attribute for this use of the field.You cannot override the field’s
missing value, validation criteria, and datatype and related subclauses (scale, segment length,
subtype, and so on) because they are part of the core definition of the global field.

• New fields that are defined in the relation.

1

define relation(ddl) define relation(ddl)

Syntax: new-field

field-name field-attributes

local-attributes::= { comments| edit-string| query-name|
security-class| position n }

This clause defines a new field within the relation, instead of using existing or virtual fields.
Because the field is defined from scratch, you must include the field’s datatype. Gdef adds these
fields to the global list of fields for that database, thereby making those fields available for
inclusion in subsequent relation definitions.

• Fields defined elsewhere and renamed for the relation.

Syntax: renamed-field

local-namebased onfield-name[local-attributes]

local-attributes::= { comments| edit-string| query-name|
security-class| position n }

This clause renames a field for use in the relation being defined, at the same time retaining all
characteristics except those you change explicitly. You can include a textual description, an edit
string, a query name, a security class, and a position clause.

Except for the security class and position clauses, these local attributes are described at length in
the entry forfield-attributesin this chapter.

If you specify a local attribute that conflicts with the attribute defined for the global field in the
define field statement, the local attribute overrides the global attribute. You cannot override the
field’s missing value, validation criteria, and datatype and its related subclauses (scale, segment
length, and so on), because they are part of the core definition of the global field.

• Virtual or computed fields.

2

define relation(ddl) define relation(ddl)

Syntax: computed-field

local-name[datatype] computed by (value-expression)

This clause defines a computed or virtual field that consists of a formula rather than a storage
location. Notethat the value expression must be in parentheses.never stores data in such fields,
but it calculates the formula and retrieves requested data.If you do not specify the optional
datatype, calculates an appropriate datatype.

Because the computed field depends on values from its context, it cannot be used in arbitrary
relations. Gdef generates a unique name for the global portion of the field.Therefore, a
computed field does not need a name that is unique in the database.

ARGUMENTS
relation-nameNames the relation you want to create.A relation name can contain up to 31 alphanumeric
characters, dollar signs ($), and underscores (_).However, it must start with an alphabetic character.

{ textual-commentary} Stores the bracketed comments about the relation in the database.The commentary
can include any of the following ASCII characters:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Blanks, tabs, and carriage returns

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] < > ; : ’ " \ | / ? . ,

class-nameAssociates a security class with the relation or fields within the relation.See the entry for
define security_classin this chapter.

field-nameSpecifies the name you want for the field in the relation.Thedefine relation statement supports
several types of field definitions, all of which you can use in the same relation definition.

position n Specifies the position (left to right) thatqli uses to print when displaying the relation.The first
field is position0. For example, if there are three fields,A, B, andC, with defined positions of 1, 0, and 2,
respectively, qli displays these fields in the orderB, A, andC.

If you do not specify a position,qli uses the order in which the fields are defined or included in the relation.

EXAMPLE
The following example defines several fields with define field statements and then includes them in a
relation:

3

define relation(ddl) define relation(ddl)

. tcs?

define field state char[2];

define field state_name varying [25];

define field city varying[25];

.sp

define relation states

{ basic information about states }

state,

state_name,

area long,

statehood char[4],

capitol based on city;

The following statement defines several fields within a relation, defines some computed values, and also includes several existing

fields:

. tcs?

define relation cities

{ info about capitols and largest cities }

city,

state,

population long,

altitude long,

latitude_degrees varying[3]

query_name latd,

latitude_minutes char[2]

query_name latm,

latitude_compass char[1]

query_name latc,

longitude_degrees varying[3]

query_name longd,

longitude_minutes char[2]

query_name longm,

longitude_compass char[1]

query_name longc,

latitude computed by (

latitude_degrees | " " |

latitude_minutes |

latitude_compass),

longitude computed by (

longitude_degrees | " " |

longitude_minutes |

longitude_compass);

4

define relation(ddl) define relation(ddl)

The following example defines a field and then includes it in a relation under different names:

. tcs?

define field population long;

.sp

define relation populations

{ US census data by state }

state,

census_1950 based on population

query_name c1950,

census_1960 based on population

query_name c1960,

census_1970 based on population

query_name c1970,

census_1980 based on population

query_name c1980;

SEE ALSO
See Chapter 6 in this manual and the entry forvalue-expressionin See also the entries in this chapter for:

• field-attributes

• define field

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

5

define security_class(ddl) define security_class(ddl)

NAME
define security_class −establish access control

SYNTAX

define security_classclass-name element-commalist;

element::= { grantee| view view-name} privilege-list

privilege-list ::= { R | W | P | C | D }

VAX/VMS:
grantee:== [uic]

UNIX:
grantee:== [group, user]

APOLLO:
grantee:== user[.project[.organization[.node]]]

DESCRIPTION
The define security_classstatement establishes access control lists that you can associate with databases,
relations, views, and fields in relations and views.

ARGUMENTS
class-nameNames the security class you want to create.A security class name can contain up to 31
alphanumeric characters, dollar signs ($), and underscores (_).However, it must start with an alphabetic
character.

elementDefines the access control for individual user or group.You can use the wildcard character % to
substitute for any of these identifiers.

The privilege list specifies the following privileges:

• R (read). Userswith read privilege can read the database, relation, view, or field.

• W (write). Userswith write privilege can write to the database, relation, view, or field.

• P (protect). Userswith protect privilege can change the security class for the database,
relation, view, or field.

• C (control). Userswith control privilege can change the metadata for the database,
relation, view, or field.

• D (delete). Userswith delete privilege can delete the definition for the relation.

Gdef automatically orderselemententries with the most specific appearing first.For example, theAPOLLO

1

define security_class(ddl) define security_class(ddl)

element ‘‘%.%.%.%’’ comes last, as does theVMS entry ‘‘[*]’ ’.

The more general access controls override the more specific.For example, if you have read privilege for a
database, but write for a specific relation in that database, you can only read that relation.

Suppose you have a personnel database and you want to hideSALARY information from most people.You
can write to a relation in which there is field that you cannot read.To do so, provided you can write to the
relation, store a record in the relation without referencing theverboten field. The access method
automatically sets that field’s value to missing.If you want to prohibit someone from getting around the
field-level security in this manner, define the missing value as an invalid value.

EXAMPLE
The following statements define a database, a security class, a field, and a relation, and associates the
security class with each of the entities:

define database "war_effort.gdb"

security_class staff

{ This database holds secret and

top secret information about the

Union war effort in 1863. Data protection

was designed at the specific request

of President Lincoln };

.sp

define security_class cabinet_level

{ this class is used on sensitive data that

must be shared with the cabinet }

lincoln.pres.usa pcrwd,

chase.treasury.cabinet r,

seward.state.cabinet crw,

%.%.cabinet rw,

view sanitized_data r;

.sp

define security_class staff

{ used for data that the cabinet is going to leak

anyway, so why not let everybody at it? }

lincoln.pres.usa pcrwd,

%.%.cabinet crw,

%.%.associates r,

%.%.staff r;

.sp

define security_class top_secret

{ this stuff is so secret even the president

probably should not see it }

lincoln.pres.usa pcrwd;

2

define security_class(ddl) define security_class(ddl)

.sp

define field general char [20];

define field battle char [20];

define field army char [20];

define field force short;

define field opinion blob;

define field location char [30];

define field destination char [30];

.sp

define relation armies

{ who is where, and what the president thinks of them }

security_class cabinet_level

army,

general,

force,

location,

destination security_class top_secret,

opinion security_class top_secret;

.sp

define view sanitized_data of a in armies

with a.location not containing "Virginia"

{ semi-public information }

a.army,

a.general;

.sp

modify relation rdb$security_classes

security_class top_secret;

SEE ALSO
See Chapter 7 in this manual.See also the entries in this chapter for:

• define database

• define relation

• define view

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

3

define trigger(ddl) define trigger(ddl)

NAME
define trigger −create integrity check

SYNTAX

define trigger for relation-name
[store: trigger-action]
[modify: trigger-action]
[erase:trigger-action]

DESCRIPTION
Thedefine trigger statement specifies an action that performs automatically whenever you execute a store,
modify, or erase operation on the relation.

The trigger language is based on theqli variant of including theany and statistical expressions. Itdiffers
from theqli variant in the following ways:

• Theabort n statement causes the action to terminate with a status ofgds_$integ_failed. The error
message includes the number you supplied in the trigger. If you are handling errors yourself in a
program, the error number is the fourth longword in the status vector.

• The trigger language does not include standalonemodify or erasestatements. Therefore,you
must include such statements in afor loop in triggers.

• Context variables are required in the trigger language.

ARGUMENTS
store: trigger-action
modify: trigger-action
erase: trigger-action Specifies that the trigger action is to be performed on a store (or insert), modify (or
update), or erase (or delete) operation.Each of these operations can have a separate trigger action.

trigger-actionSpecifies a statement that executes whenever you store a new record into the relation, modify
a field from a record in the relation, or erase a record from the relation.Gdef supplies two predefined
context variables,old andnew, for use in the trigger action.Old refers to the record you are modifying or
erasing, andnew refers to the new record or version you are creating.

See the for information about data manipulation.

EXAMPLES
The following statements define a relation, a trigger, a second relation that keeps an audit trail of activity on
the first relation, and rejects new records without a widget name or modified widgets whose new number is
less than the old number:

1

define trigger(ddl) define trigger(ddl)

. no_name

define database "not_yachts.gdb";

.sp

define relation widgets

name char [10],

number short;

.sp

define relation log

name,

what char [6],

old_number based on number,

new_number based on number,

when date;

.sp

define trigger for widgets

store:

store x in log

if new.name missing abort 1

x.what = "STORE";

x.name = new.name;

x.new_number = new.number;

x.when = "today";

end_store;

modify:

store x in log

if new.number missing abort 2

x.what = "MODIFY";

x.name = new.name;

x.old_number = old.number;

x.new_number = new.number;

x.when = "today";

end_store;

erase:

store x in log

x.what = "ERASE";

x.name = old.name;

x.old_number = old.number;

x.when = "today";

end_store;

end_trigger;

SEE ALSO
See Chapter 8 in this manual.

2

define trigger(ddl) define trigger(ddl)

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

3

define view(ddl) defineview(ddl)

NAME
define view −create view

SYNTAX

define viewview-nameof rse
[{ textual-commentary}]
[security_classclass-name]
field-name-commalist;

field-name::= { included-field|
renamed-field|
computed-field}

DESCRIPTION
The define viewstatement creates a view definition that can include fields from one or more relations.A
view can be:

• A simple vertical subset of a relation.That is, the view limits the fields that are displayed.

• A simple horizontal subset of a relation.That is, the view limits the records that are displayed.

• A single relation subset vertically and horizontally.

• A combination of relations subset horizontally, vertically, or both.

You can access views as if they were relations.That means you can select records from it, project on its
fields, join it with another relation or itself, or involve it in a union. However, the source of the view
determines which, if any, update operations you can perform on the view:

• If the view is a vertical subset of a single relation, you can treat it as a relation for both retrieval
and update purposes, provided that all excluded fields allow missing values.

• If the view references more than one relation, you cannot update records through the view.
Instead, you must update the records through their source relations.This restriction avoids update
anomalies.

A view can consist of:

• Fields from any of the source relations, with optionally specified local attributes

1

define view(ddl) defineview(ddl)

Syntax: included-field

dbfield-expression[local-attributes]
local-attributes::= { comments| edit-string| query-name|
security-class| position n }

The dbfield-expressionis a field name qualified by a context variable. Thecontext variable is
declared in the record selection expression used to limit the records for the view.

• Fields from any of the source relations, renamed for use in the view (fr om dbfield-expression
[local-attributes]).

Syntax: renamed-field

local-namefr om dbfield-expression[local-attributes]
local-attributes::= { comments| edit-string| query-name|
security-class| position n }

The fr om clause renames a qualified field name for use in the view being defined, at the same time
retaining all characteristics except those you change explicitly.

• Virtual fields (computed by (value-expression)).

Syntax: computed-field

local-field[datatype] computed by(value-expression) [local-attributes] }
local-attributes::= { comments| edit-string| query-name|
security-class| position n }

The computed byclause defines a virtual field that is a formula rather than a reference to stored
fields.

For each of the fields in a view, you can include a textual description, an explicit missing value, a query
name, and a security class.Except forsecurity-classand theposition clause, these local attributes are
described at length in the entry forfield-attributesin this chapter.

If you specify a local attribute that conflicts with the attribute defined for the global field in thedefine field
or define relation statement, the local attribute overrides the global attribute. Theonly attributes you
cannot override are the field’s validation criteria, and datatype and related subclauses (scale, segment
length, and so on).

ARGUMENTS
view-name Names the view you want to create.A view name can contain up to 31 alphanumeric
characters, dollar signs ($), and underscores (_).However, it must start with an alphabetic character.

2

define view(ddl) defineview(ddl)

rseSelects the records that constitute the view. You can use any option of the record selection expression in
defining the view except thefirst-clauseand thesorted-clause.

See for more information on record selection.

{ textual-commentary} Stores a bracketed descriptive comment about the view. The commentary can
include any of the following ASCII characters:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Blanks, tabs, and carriage returns

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] < > ; : ’ " \ | / ? . ,

security_classclass-nameAssociates a security class with the view. You can also treat a view as if i t were
a user. See the entrydefine security_classin this chapter for more information.

field-nameSpecifies the field(s) you want to include in the view. The define view statement supports
several types of field definition, all of which you can use in the same view definition.

position n Specifies the position (left to right) thatqli uses to print when displaying the view. The first field
is at position0. For example, if there are three fields,A, B, andC, with defined positions of 1, 0, and 2,
respectively, qli displays these fields in the orderB, A, andC.

If you do not specify a position,qli uses the order in which the fields are defined or included in the view.

EXAMPLES
The following statement defines a vertical subset of a relation (that is, subset of fields):

. tcs?

define view geo_cities of c in cities

{ subset of CITIES with geographic data only }

c.city,

c.state,

c.altitude,

c.latitude,

c.longitude;

The following view defines both a horizontal and vertical subset (that is, selected records and a subset of fields):

. tcs?

define view middle_america of c in cities

3

define view(ddl) defineview(ddl)

with longitude_degrees beween 79 and 104 and

latitude_degrees between 33 and 42

c.city,

c.state,

c.altitude;

The following view defines a horizontal subset of a relation by using an existential qualifier to test another relation for field values

from the first relation:

. tcs?

define view ski_states of s in states

with any shush_boom in ski_areas

with s.state = shush_boom.state

s.state,

s.capitol,

s.area,

s.population;

The following view joins two relations, using values from fields in both relations to compute population densities for each decade’s

census:

. tcs?

define view population_density of p in populations

cross s in states over state

p.state,

density_1950 computed by

(p.census_1950 / s.area),

density_1960 computed by

(p.census_1960 / s.area),

density_1970 computed by

(p.census_1970 / s.area),

density_1980 computed by

(p.census_1980 / s.area);

SEE ALSO
See Chapter 6 in this manual and the entry forvalue-expressionin See also the entries in this chapter for:

• field-attributes

• define security_class

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

4

delete(ddl) delete(ddl)

NAME
delete −erase metadata

SYNTAX

delete{ field field-name| index index-name|
relation relation-name| security_classclass-name|
trigger for relation-name| view view-name };

DESCRIPTION
The delete statement erases the specified database entityand all data associated with that entity.
Therefore, you must be very sure that you want to delete something before you do it.

RULES
(1) If you want to delete a database:

• For VMS, use thedeletecommand.

• For UNIX systems, use therm command.

• For AEGISsystems, use thedlf command.

(2) You can delete a field that was defined in adefine field or define relation statement. However,
because fields are included in a relation, you must first delete the field from each relation in which
it is included. To do so, you must use thedrop-clauseoption of themodify relation statement.
The following statements delete a field from a relation and then from the database:

. tcs?

modify relation states

drop statehood;

.sp

delete field statehood;

You must explicitly delete a field defined in adefine relation statement after dropping it from any other relations in which it is used.

For example, suppose you defined the fieldBIRTH_DATE in an EMPLOYEES relation, subsequently included it in
another relation, and then decided not to keep it. The following sequence deletes the field from all its
instances and then finally from the database itself:

. tcs?

modify relation employees

drop birth_date;

.sp

modify relation demographics

drop birth_date;

1

delete(ddl) delete(ddl)

.sp

delete field birth_date;

Do not drop fields from relations unless you are sure that nothing else depends on their data.Dropping fields causes programs that

depend on them to fail.

(3) You can delete any index you want, but if you delete an index that someone else is using, the other
user’s program will get an unrecoverable error. The following statement deletes an index:

. tcs?

delete index idx4;

(4) You can delete any relation you want, but if you delete a relation that someone else is using, the
other user’s program will get an unrecoverable error. Because thedelete relation statement
removes a relation and all its records, you should use this statement with caution.The following
statements delete relations:

. tcs?

delete relation gudgeons;

.sp

delete relation non_eeoc_approved_data;

(5) You can delete a security class without first deleting it wherever it is referenced. Theobjects
associated with the deleted security class are then unprotected.

(6) treatsviews much like relations. However, because a view is only a virtual relation, the effect of
deleting a view that is being used by someone else is less catastrophic than deleting a relation that
is being used.In general, when you delete a view, other users should not encounter any problems
if they are already running their programs.However, if they start up a program that references the
deleted view, the program fails when it tries to compile the request that mentions that view.

The following statements delete views:

. tcs?

delete view population_density;

.sp 0.5

delete view geo_cities;

.sp 0.5

delete view riv_vu;

SEE ALSO
See Chapter 8 in this manual.

2

delete(ddl) delete(ddl)

DIAGNOSTICS
See the entry forgdef in this manual.

3

field-attributes(ddl) field-attributes(ddl)

NAME
field-attributes −defining field attributes

SYNTAX

field-attributes ::= datatype [comments| edit-string | missing-value|
query-name| security-class| valid-if] ...

DESCRIPTION
The field-attributes clause describes the characteristics of fields defined or modified by the following
statements:

• define field(all of the above clauses exceptsecurity-class)

• modify field (all of the above clauses)

• define relation (all of the above clauses)

• modify relation (commentsandsecurity-classclauses only)

A syntactic and semantic description of each of these clauses follow.

SEE ALSO
See Chapters 5 and 6 in this manual.See also the entries in this chapter forgdef, define field, define
relation, define view, modify field, and modify relation, and the discussion of theconditional-expression
in

1

field-attributes(ddl) field-attributes(ddl)

Syntax: datatype

datatype::= { short [scale-clause] |
long [scale-clause] | float | double |
char[n] [subtype] | varying [n] [subtype] |
date | blob-clause}

scale-clause::= scale[-]n

blob-clause::= blob [subtype] [segment_lengthn]

subtype::= sub_type { text | blr | fixed | acl | -n }

Description: datatype
Thedatatypeclause specifies the datatype of a field.It is the only required field attribute.

This table lists supported datatypes by language.

Datatype BASIC C COBOL FORTRAN Pascal PL/I

short word short s9(4) comp I*2 integer fixed
binary(15)

long long long s9(9) comp I*4 integer32 fixed

float single float comp-1 real real float
binary(24)

double double double comp-2 double_ double float
precision binary(53)

char[n] string char[n] pic x (n) character array[1...n] character(n)
dimension(n) ofchar

varying[n] string char[n] pic x (n) character array[1...n] character(n)
dimension(n) ofchar

date gds_$quad_t gds_$quad s9(18) I*4 gds_$quad gds_$quad
dimension(2)

blob gds_$quad_t gds_$quad s9(18) I*4 gds_$quad gds_$quad
dimension(2)

2

field-attributes(ddl) field-attributes(ddl)

This table lists the datatypes by size and range/precision.

Datatype Size Range/Precision

short 16 bits -32768 to 32767

long 32 bits -2**31 to (2**31)-1

float 32 bits approx. 7 decimal digits

double 64 bits approx. 15 decimal digits

char n bytes 0to 32767 characters

varying varies 0to 32767 characters

date 64 bits 1 January 100 to 11 December 5941

blob 64 bits none

Both the date and blob datatypes are represented above by gds_$quad, a quantity for which allocates 64
bytes of storage.However, this quantity is functionally different for dates and blobs:

• For the date datatype,gds_$quad represents the date encoded in 64 bits.The GDML library
includes two routines,gds_$encodeandgds_$decode, for date manipulation.See the for more
information.

• For the blob datatype,gds_$quadrepresents an identifier that points to the actual blob data.The
format of the data depends on the application.

The blob identifier stored in the record is a 64-bit quantity. The blob itself is of unlimited size; a
blob can exceed 65,535 bytes and is limited only by the amount of physical storage available.

Varying string is a character datatype that includes a count at the beginning. Thisdatatype is not directly
supported by some host languages.

N O T E

When you use an datatype that is not supported by your host language, automatically converts such fields to
equivalent types that are supported.To ensure that variables you define match the datatypes in database
fields, usebased onclause to establish the datatype of your variables. Seethe for more information about
thebased onclause.

Ar guments: datatype
scale-clauseSpecifies the power of 10 by which multiplies the stored integer value for use byqli , COBOL,
andPL/I.

3

field-attributes(ddl) field-attributes(ddl)

For example, a negative scale of two means that there should be a decimal point two places to the left of the
digits.

blob-clauseProvides the characteristics of blob fields.The optionalsegment_lengthclause specifies a
segment length that system components use for various purposes.For example,gpre uses this value to set
up a buffer for data transfer between the calling program and the andqli uses the segment length to format
its display.

Gdef provides a default value of 80 if you do not include thesegment_lengthclause. Ifyou update the
system relations directly and leave the segment length missing,gpre andqli supply lengths of 512 and 40,
respectively, for their own purposes.

subtype-clauseFor blob fields, there are three predefined subtypes:text, blr (request language statements),
and acl (access control lists).Qli uses the subtype to determine how it should display a blob. If your
application requires special blob handling, you can define your own subtype; the range of negative values
from -1 to -32768 is reserved for users.

For char andvarying fields, thefixed subtype is defined as a convenience forC programs. Text strings are
passed toC as null-terminated strings unless you specify thestring switch when you preprocess the
program. Ifyour application requires that a field contain non-ASCII binary values that may include nulls,
declare the field to have thefixed subtype so it willnotbe truncated at the first null byte.

Example: datatype
The following statements define fields with various datatypes:

define field tolerance long scale -2;

.sp

define field text_blurb blob sub_type text

segment_length 60;

.sp

define field price long

valid if (price > 0);

.sp

define field manufacturer char[10]

valid if

(manufacturer ne "SLEAZOLA" and

manufacturer ne "SHODTECH" and

manufacturer ne "SCHLOKHAUS");

.sp

define field encrypted_key char[20]

sub_type fixed;

.sp

define relation parts

4

field-attributes(ddl) field-attributes(ddl)

item_code char[6],

item_name char[25],

manufacturer char[10],

blurb blob segment_length 60,

price long,

.

.

.

5

field-attributes(ddl) field-attributes(ddl)

Syntax: comments

{ textual-commentary}

Description: comments
Thecommentsclause lets you store bracketed comments about the field in the database.

Ar guments: comments
textual-commentaryA comment can include any of theseASCII characters:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Blanks, tabs, and carriage returns

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] < > ; : ’ " \ | / ? . ,

Example: comments
The following statements define fields with comments:

. tcs?

define field standard_date date { all-purpose date field };

.sp

define relation parts

item_code char[6] { alphanumeric identifier },

item_name char[25] { abbreviated product name },

manufacturer char[10] { aka supplier },

blurb blob segment_length 60

{ this field stores the

descriptions of the

items in inventory },

price long,

.

.

.

6

field-attributes(ddl) field-attributes(ddl)

Syntax: edit string

edit_string " edit-character..."

edit-character:== see the tables below

Description: edit string
Theedit-stringclause specifies an alphabetic, numeric, or date format for a field or computed value. Only
qli uses edit strings.

Alphabetic and Miscellaneous Edit String Characters

Character Meaning

A Any alphabetic character.

X Any alphabetic character.

B A blank space.

’string’ Print the quoted string.
"string"

Date Edit String Characters

Character Meaning

Y (integer) The year, from right to left. For 1987,y(1) yields 7,
y(2)yields87, and so on.

M (integer) The name of the month.The integer specifies how
many of the characters in the month name to print.

N (integer) The numeric month.The best value for the integer is
2.

D (integer) The day of the month.The best value for the integer
is 2.

W (integer) The name of the day of the week.The integer
specifies how many of the characters in the day name
to print.

B A blank space.

7

field-attributes(ddl) field-attributes(ddl)

Numeric Edit String Characters

Character Meaning

9 An ordinary digit.

* A leading asterisk (for checks).

Z A leading digit or blank if the leading position is zero.

H Hexadecimal representation of character.

+ Leading plus sign.Prints leading sign for positive
and negative numbers.

- Leading minus sign.Prints leading sign for negative only.

$ Leading dollar sign.Multiple dollars sign float.

(()) Parentheses to be printed around negative numbers.

DB Debit.

CR Credit.

. Decimal point.

B Blank space.

, Comma for thousands, millions, etc.

N O T E

Leading signs (dollar sign, plus, and so on) take up a character space.Therefore, the number ‘‘123.45’’
with an edit string of ‘‘$$$.99’’ overflows, printing ‘‘23.45’’ on old versions ofqli and ‘‘***’ ’ on newer
versions.

Example: edit string
The following statements define a database and three relations, each containing several fields with edit
strings:

. ddl_134.gdl

define database "stuff.gdb";

define relation budgets

b1 long,

b2 long edit_string "999,999",

8

field-attributes(ddl) field-attributes(ddl)

b3 long edit_string "((999,999))",

b4 long edit_string "-ZZZ,ZZZ,ZZ9";

define relation employee_stuff

social_security char [9] edit_string "xxx-xx-xxxx",

phone_number char [10] edit_string "(xxx)Bxxx-xxxx",

salary long edit_string "HHHHHHHHHBBB’(wow!)’";

define relation family_dates

name varying [10],

birth date edit_string "w(3),bd(2)bm(12)by(4)",

wedding date edit_string "d(2)bn(2)by(4)",

awareness date edit_string "y(4)";

9

field-attributes(ddl) field-attributes(ddl)

Syntax: missing value

missing_value [is] { fixed-point-number| quoted-string}

Description: missing value
The missing-valueclause provides a literal string (numeric or character) that is displayed if no value is
stored for that field.If you store that value in the field, marks the field as missing.The missing value must
be legitimate value for the field’s datatype.

Ar guments: missing value
fixed-point-numberA number that is displayed as the missing value. Thenumber must not exceed the
length of the field.For integer datatypes, the number cannot include a decimal point unless the field has a
scale factor. For floating datatypes, the number should include a decimal point.

quoted-stringA quoted literal expression that is displayed as the missing value. Thestring must not exceed
the length of the field.

Example: missing value
The following statements define fields with explicit missing values:

define field price float

missing_value is -15.75

valid if

(price > 0 or

price missing);

.sp

define field headwater_state

missing_value is "??";

10

field-attributes(ddl) field-attributes(ddl)

Syntax: query name

query_name[is] alternate-name

Description: query name
Thequery-nameclause provides an alternate field name for use inqli . You can reference a field by its full
name or by the query name.

You may find that the longer the name, the more likely users are to mistype it.However, for reasons of
internal documentation, you might want to keep the name as descriptive as possible. Therefore,you can
use a query name to rename the field to something easier to type.

Ar guments: query name
alternate-nameA query name can contain up to 31 alphanumeric characters, dollar signs ($), and
underscores (_).However, it must start with an alphabetic character.

Example: query name
The following statement defines a field with a query name:

define field longitude_degrees char[2]

query_name longd;

The following statement defines a relation and assigns a query name to two fields:

define relation cities

{ largest 200 population centers }

city,

state,

population,

latitude_degrees char[2]

query_name latd,

latitude_minutes char[3]

query_name latm,

latitude_compass char[1]

query_name latd,

longitude_degrees char[2]

query_name longd,

longitude_minutes char[2]

query_name longm,

longitude_compass char[2]

query_name longc;

11

field-attributes(ddl) field-attributes(ddl)

Syntax: security class

security_classclass-name

Description: security class
Thesecurity-classclause associates a security class with a field in a relation or a view.

You can associate a security class with a field only in adefine relation, modify relation, define view, or
modify view statement. You cannot use asecurity-classclause in adefine field statement, because the
security rules apply to a field in a relation, and are not a global characteristic.

Ar guments: security class
class-nameNames the security class you want to associate with the field.The security class must be
defined in adefine security_classstatement.

Example: security class
The following statement associates a security class with a field in a relation:

. tcs?

define security_class lmu

{ limited metadata update. This class keeps everyone

but Zaphod from assigning rights. }

zaphod pdrwc,

%.zaphod rw,

%.%.gds r,

zaphod.grd.gds p,

view less_of_a_secret r;

define relation r1 security_class lmu

no_name char [10];

12

field-attributes(ddl) field-attributes(ddl)

Syntax: valid if

valid_if (boolean-expression)

Description: valid if
Thevalid-if clause provides a field-level integrity criterion that checks when it stores the record or updates
the field in a record.

If the new value fails the test, the field assignment fails. Becausethe validation criteria are stored in the
database, they eliminate the need for such checks in the programs that access the database.

A validation expression differs from a trigger in that a trigger has full context, can access fields in any
relation, and can perform updates.A validation expression can only reference the field being validated and
literal values.

Ar guments: valid if
boolean-expressionA valid Boolean expression. Seethe entry forboolean-expressionin the or the

Example: valid if
The following statements define fields with validation expressions:

define field price long

valid if (price > 0 or price missing);

.sp

define relation manufacturers

manufacturer char[10]

valid if

(manufacturer ne "SLEAZOLA" and

manufacturer ne "SHODTECH" and

manufacturer ne "SHLOKHAUS" and

manufacturer not missing),

.

.

.

13

modify database(ddl) modify database(ddl)

NAME
modify database −modify a database

SYNTAX

modify databasequoted-filespec[{ textual-commentary}]
[security_classclass-name]
[drop security_class];

DESCRIPTION
Themodify databasestatement specifies the name of the database for which you want to change metadata.

Themodify databasestatement must be the first statement in the source file or input togdef.

ARGUMENTS
quoted-filespecA valid file specification enclosed in single (’) or double (") quotation marks.If the shell you
regularly use is case-sensitive, make sure that you always reference the database file exactly as it is spelled in
thedefine databasestatement.

The file specification can contain the full pathname to another node in the network. File specifications for
remote databases have the following form:

Syntax: Remote Database File Specification

VMS to ULTRIX:
node-name::filespec

VMS to non-VMS and non-ULTRIX:
node-namêfilespec

Within Apollo DOMAIN:
//node-name/filespec

All Else:
node-name:filespec

{ textual commentary} Stores the bracketed comments about the database in the database.The commentary
can include any of the following ASCII characters:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

1

modify database(ddl) modify database(ddl)

• Blanks, tabs, and carriage returns

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] < > ; : ’ " \ | / ? . ,

class-nameAssociates a security class with the database.See the entry fordefine security_classin
this chapter for more information.

EXAMPLE
The following statements each appear as the first statement in a source file used to define or modify a
database:

modify database "/usr/igor/war_effort.gdb"

{ metadata last updated 7 November 1985 }

security_class lmu;

.sp

modify database "atlas.gdb";

.sp

modify database "/usr/hector/dingies.gdb";

SEE ALSO
See Chapter 8 in this manual.

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

2

modify field(ddl) modify field(ddl)

NAME
modify field −change global field characteristics

SYNTAX

modify field field-name field-attributes;

DESCRIPTION
Themodify field statement changes the characteristics of an existing field.

When you modify field characteristics, does not change the characteristics on disk immediately. Instead, it
changes the characteristics when someone updates the field.Meanwhile, ‘‘filters’’ unchanged values so that
they reflect the updated characteristics until they are actually changed.

If you want to change the characteristics of a field defined inside a relation, you may not be able to change
it within that relation.For example, physical attributes, such as the datatype, can be changed only with the
modify field statement. Thisrestriction is due to the way gdef deals with fields defined in relation.In
short, fields defined in relations (locally defined fields) are automatically added to the list of fields in the
database (globally defined fields). Althoughyou may define a field inside a relation,gdef disregards the
source of the definition and makes it a globally defined field as if it were defined with adefine field
statement.

Therefore, if you want to change anything other than the field’s position, commentary as a part of that
relation, query name, or security class as a part of that relation, you must do so with themodify field
statement.Gdef then makes the change for all uses of that global field in all relations of the database.

Finally, if you change the datatype or length of fields upon which acomputed byfield is based, the length
of the computed field does not change automatically. This does not cause a problem if you decrease the
size of the base fields, but will cause a data conversion error if you increase them, particularly if the
computation consists of concatenated strings.The preferred way to fix this problem is to delete and re-
create the computed field.The ‘‘quick and dirty’’ way is to manually increase the value of
RDB$FIELD_LENGTHof theRDB%FIELDSrecord for the computed field.

ARGUMENTS
field-nameNames the field you want to create or the field you want to modify.

field-attributes Specifies the datatype, length or scale if appropriate, and several optional field
characteristics. You can change the textual description of the field or its query name.For detailed
information about the syntax and semantics of these options, see the entry forfield-attributesin this chapter.

EXAMPLE
The following statements modify fields:

. tcs?

modify field zip char[9];

1

modify field(ddl) modify field(ddl)

.sp

modify field headwater_state

missing_value is "??";

.sp

modify field price longword;

SEE ALSO
See Chapter 8 in this manual.See also the entries in this chapter for:

• field-attributes

• modify relation

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

2

modify relation(ddl) modify relation(ddl)

NAME
modify relation −modify a relation

SYNTAX

modify relation relation-name[{ textual-commentary}] [operation-commalist];

operation ::= { add field field-name[field-attributes|
drop field field-name|
modify field field-name[field-attributes|
drop security_class[security-class-name] |
security_classsecurity-class-name}

DESCRIPTION
Themodify relation statement can change a relation’s comment field, complement of fields, and local field
characteristics.

ARGUMENTS
relation-nameIdentifies the relation you want to modify.

{ textual-commentary} Stores comments about the relation in the database.The textual-commentarycan
include any of theseASCII characters:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Blanks, tabs, and carriage returns

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] < > ; : ’ " \ | / ? . ,

add field field-nameAdds a field to the relation:

• If the field has already been defined in the database,field-attributes can specify the
position of the field, textual description of the field, a query name for use withqli , and a
security class.

• If the field does not exist elsewhere, you must specify a datatype.You can also specify an
explicit missing value, a validation expression, the position of the field, textual
description of the field, a query name for use withqli , and a security class.

The addition of fields to a relation is almost identical to the inclusion of fields when you define the relation.
See the entry fordefine relation in this chapter for more information.

drop field field-nameRemoves the named field from the relation.When you delete a field from a relation,
other users should not encounter any problems if they are already running their programs.However, if they

1

modify relation(ddl) modify relation(ddl)

start up a program that references the deleted field, the program fails when it tries to compile the request
that mentions that field.

You cannot delete fields that are used in views based on this relation without first deleting the field from
those views.

modify field field-nameIdentifies the field whose relation-specific characteristics you want to change.You
can change only the position of the field, the textual description, the query name, the security class of the
field, and the field on which the local field is based (for fields defined with thebased onoption).

You cannot change the datatype, the missing value, or the validation expression. Ifyou want to change one
of these attributes, you must do so with themodify field statement.

drop security_class[security-class-name] Removes the named security class from the relation.If you do
not specifysecurity-class, gdef removes any security class associated with the relation.

security_classsecurity-class-nameAssociates the specified security class with the relation.

EXAMPLE
The following example modifies a relation by adding fields, dropping fields, and modifying fields:

. tcs?

modify database "test_atlas.gdb";

.sp

modify relation cities

add field year_incorporated char[4]

query_name inc

position 6,

add field type_of_government char[1]

query_name gov

valid_if

(type_of_government = "C" or

type_of_government = "M" or

type_of_government missing),

drop field population;

modify relation states

security_class cabinet_level;

SEE ALSO
See Chapter 8 in this manual.See also the entries in this chapter for:

• field-attributes

2

modify relation(ddl) modify relation(ddl)

• define relation

• modify field

DIAGNOSTICS
See the entries forgdef in this chapter.

3

modify trigger(ddl) modify trigger(ddl)

NAME
modify trigger −modify integrity check

SYNTAX

modify trigger f or relation-name
[store: trigger-action]
[modify: trigger-action]
[erase:trigger-action]

DESCRIPTION
The modify trigger statement changes the action that performs automatically whenever you execute a
store, modify, or erase operation on the relation.

ARGUMENTS
{ textual-commentary} Stores or modifies comments about the trigger in the database.The textual-
commentarycan include any of theseASCII characters:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:A—Z

• Numerals:0—9

• Blanks, tabs, and carriage returns

• Special characters:! @ # $ % ˆ & * () _ - + = ‘ ˜ [] < > ; : ’ " \ | / | . ,

store:
modify:
erase:Changes the trigger action performed on a store (or insert), modify (or update), or erase (or delete)
operation. Eachof these operations can have a separate trigger action.

trigger-actionSpecifies aGDML statement that executes whenever you store a new record into the relation,
modify a field from a record in the relation, or erase a record from the relation.See the for information
aboutGDML data manipulation.

EXAMPLES
The following statements modify the erase trigger associated with a relation:

. tcs?

modify database "not_yachts.gdb";

.sp

modify trigger for widgets

erase:

1

modify trigger(ddl) modify trigger(ddl)

store x in log

x.what = "GONZO";

x.name = old.name;

x.old_number = old.number;

x.when = "today";

end_store;

end_trigger;

SEE ALSO
See Chapter 8 in this manual.

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

2

modify view(ddl) modifyview(ddl)

NAME
modify view −modify view

SYNTAX

modify view view-name[{ textual-commentary}] [operation-commalist]

operation ::= { drop field field-name|
drop security_class[security-class-name] |
security_classsecurity-class-name}

DESCRIPTION
Themodify view statement:

• Drops a field from a view

• Drops a security class for a view

• Adds a security class for the view

ARGUMENTS
view-nameIdentifies the view you want to change.

{ textual-commentary} Stores the bracketed comments about the view in the database.The textual-
commentarycan include any of the following ASCII characters:

• Uppercase alphabetic:A—Z

• Lowercase alphabetic:a—z

• Numerals:0—9

• Blanks, tabs, and carriage returns

• Special characters: ! @ # $ % ˆ & * () _ - + =‘ ˜ [] < > ; : ’ " \ | / ? . ,

drop field field-nameRemoves the named field from the view, but not from the source relation(s).You
cannot delete fields that are used in views based on this view without first deleting the field from those
views.

drop security_class[security-class-name] Removes the named security class.If you do not specify
security-class, gdef removes any security class associated with the view.

security_classsecurity-class-nameAssociates the specified security class with the view.

EXAMPLES
The following statement removes a field, drops a security class, and adds a new security class:

1

modify view(ddl) modifyview(ddl)

. tcs?

modify view geo_cities

{ new comment goes here }

drop field altitude,

drop security_class,

add security_class top_secret;

SEE ALSO
See Chapter 8 in this manual.See also the entries in this chapter for:

• field-attributes

• define view

• define security_class

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

2

