define database(ddI) define database(ddl)

NAME
define database —create a database

SYNTAX

define databasequoted-filespef{ textual commentary ] [ security classclass-namé;

DESCRIPTION
Thedefine databasestatement pnddes the name for the database to be created.

Thedefine databasestatement must be the first statement in the source file or ingdéto

ARGUMENTS
guoted-filesped valid file specification enclosed in single (') or double (") quotation malfkde shell
you regyularly use is case-sens# make are that you alays reference the database filaetly as it is
spelled in thelefine databasestatement.

The file specification can contain the full pathname to another node in therlknefwle specifications for
remote databasesvethe folloving form:

Syntax: Remote Database File Specification

VMS to ULTRIX:
node-namefilespec

VMS to non-VMS and non-ULRIX:
node-naméilespec

Within Apollo DOMAIN:
/Inode-naméilespec

All Else:
node-nams#ilespec

{ textual commentary} Stores the bragted comments about the database in the databHse.
commentary can include yaof the folloving ASCII characters:

. Uppercase alphabetié:—Z

. Lowercase alphabetiece—z

. Numerals0—9

. Blanks, tabs, and carriage returns

. Special characters: ' @ #$% " &* () _-+=[]<>;:""\|/?.,



define database(ddI) define database(ddl)

class-nameAssociates a security class with the datab&see the entry fodefine security_class
in this chapter for more information.

EXAMPLE
The following statements each appear as the first statement in a source file used to define a database:

define database "/gds/exanpl es/ atl as. gdb"
.Sp
define database "atl as. gdb";
.Sp
define database "/usr/jinbo/boats.gdb"
{ the ubiquitous test database }
security_class | nu;

.S
defi ne database "/usr/igor/datafiles/atlas.gdb";
SEE ALSO
See Chapter 4 in this manu&ee also the entries in this chapter for:
. gdef
. define security_class
DIAGNOSTICS

See Chapter 3 for a discussion of errors and error handling.



define field(ddl) define field(ddl)

NAME
define field —define a field
SYNTAX
define field field-name datatype field-attutes
DESCRIPTION
Thedefine fieldstatement describes the characteristics ofaafiedd for later inclusion in a relation.
You can also define fields in relation§&ee the entries fadefine relation and modify relation in this
chapter for more information.
To dsallow duplicate alues for a field, define an indéor the field in the relation and use theique
option. Seehe entry fordefine indexin this chapter for more information about defining keste
ARGUMENTS

field-nameNames the field you ant to create A field name can contain up to 31 alphanumeric characters,
dollar signs ($), and underscores (However, it must start with an alphabetic character

datatypeSpecifies the field’ datatype. Thedatatype specification must precede other field atghand
descriptve mmments. Br detailed information about supported datatypes, see the enfigldeattributes
in this chapter

field-attributes Specifies the length or scale if appropriate, andrakoptional field characteristicsYou
can include a tdual description of the field, arx@icit missing walue, a query name, and alidation
expression.

For detailed information about optional attifes, see the entry féield-attributesin this chapter

EXAMPLE
The following statements define fields:

. tcs?
define field tolerance |ong scale -2;
.sp
define field blurb bl ob sub_type text
stream segnent _| ength 60
{ text for catal ogue article };

.sSp
define field manufacturer char[10]
valid if

(manufacturer ne "SLEAZOLA" and
manuf acturer ne "SHODTECH' and



define field(ddl)

manuf act urer ne " SCHLOKHAUS")
{ add bad suppliers as necessary }
m ssing_value is "NA"

.Sp
define field price float
valid if

(price > 0 or
price m ssing)
m ssing_value is -1.99
.Sp
define field part_nunber char[5];

SEE ALSO

See Chapters 4 and 5 in this manu#de also the entries in this chapter for:

. field-attributes
. define relation

. modify relation

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.

define field(ddl)



define ind&(ddl) defineindex(ddl)

NAME
define ind& —create an inde
SYNTAX
define index index-name(for] relation-name
[ unique ] [ { textual-commentary} ]
field-name-commalist
DESCRIPTION
The define index statement defines an indéor a relation. You must define a relation before you can
create an indefor it.
automatically maintains all indes. You do not hee  reference an indewhen you access data—the
access method does it automatically
ARGUMENTS

index-nameNames the indeyou want to create.An index name can contain up to 31 alphanumeric
characters, dollar signs ($), and underscoresHojvever, it must start with an alphabetic character

relation-nameSpecifies the relation for which you are defining thexnde
unique Disallows duplicate &lues in the inde

Try to index on fields used agrimary keys, such as unique identification numbers, part numbers, sme@lo
numbers, social security numbers (although social security numbers are not reliably unique amd, by la
should not be used for identification purposes), and soron.can define a unique ingdy specifying the
optional leyword unique. If you do so, thealues forfield-nameor combinations ofield-name must then

be unique.If you try to store aalue that alreadyxésts, the assignment operatiail$.

If you create a multi-gement ind&, you should first consider which of theykfields is lilely to hae the
unique \alues. Haing done so, you should list thield-nams in descending order by uniqueness Such
ordering improes index compression.

{ textual-commentary Stores the bragted comments about the relation in the datab@ke.commentary
can include anof the follonving ASCII characters:

. Uppercase alphabetig:—Z

. Lowercase alphabetie:—z

. Numerals0—9

. Blanks, tabs, and carriage returns



define ind&(ddl) defineindex(ddl)

. Special characters: ! @ #$ % " &* () _-+=[]<>;:""\|/?.,

field-nameSpecifies one or more fields framlation-namethat will be indeed.

You can create a single or multigraent ind& for a relation. A single-s@ment ind& consists of a single
field, while a multi-sgment ind& consists of tw or more fields. In both cases, you shoulgad indexing

a field that has f@ unique \alues. Suclindexes provide little performance imprk@ment and can reduce
update performancerinally, because of the nature of the blob datatype, you cannot indeb field.

EXAMPLE
The following statements define relations and somexeglor them:

tcs?
define relation states

define relation cities

define index state_idxl for states
uni que state

.Sp

define index state_idx2 for states
uni que state, state_nane

.Sp

define index river_idxl for rivers
uni que { speed access and

elimnate duplicates }

river;

.Sp

define index rivstat_idx1l for river_states
uni que river, state

SEE ALSO
See the entries in this chapter for:
. gdef
. delete



define ind&(ddl) defineindex(ddl)

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.



define relation(ddl) define relation(ddl)

NAME
define relation —define a relation
SYNTAX
define relation relation-name
[ { textual-commentary} ]
[ security classclass-name]
field-description-commalist
field-descriptiort= { included-field new-field | renamed-field computed-field
DESCRIPTION
Thedefine relation statement creates a relatiofs.relation can consist of:
. Included fields.Such fields are defined in preusdefine fieldor define relation statements, and

can hae otionally specified local attriies. Theocal attributes are described at length in the
entry forfield-attributesin this chapter

Syntax: included-field

field-namdlocal-attributeg

local-attributes::= { comment$edit-string| query-name
security-clasg position n }

If you specify a local attrilite that conflicts with the attribe defined in the field definition, the
local attritute averrides the global attrilte for this use of the fieldYyou cannot @erride the fields
missing \alue, \alidation criteria, and datatype and related subclauses (scgtagrselength,
subtype, and so on) becauseythe part of the core definition of the global field.

. New fields that are defined in the relation.



define relation(ddl) define relation(ddl)

Syntax: new-field

field-name field-attribtes

local-attributes::= { comment$edit-string| query-name
security-clasg position n }

This clause defines awefield within the relation, instead of usingising or virtual fields.
Because the field is defined from scratch, you must include thes fiblditype. Gdef adds these
fields to the global list of fields for that database, thereby making those figitibla for

inclusion in subsequent relation definitions.

. Fields defined elsghere and renamed for the relation.

Syntax: renamed-field

local-namebased onfield-namdlocal-attributeg

local-attributes::= { comment$edit-string| query-name
security-clasg position n }

This clause renames a field for use in the relation being defined, at the same time retaining all
characteristicsxeept those you changemicitly. You can include a x¢ual description, an edit
string, a query name, a security class, and a position clause.

Except for the security class and position clauses, these localitetirdre described at length in
the entry foffield-attributesin this chapter

If you specify a local attrilite that conflicts with the attiibe defined for the global field in the
define field statement, the local attrile overrides the global attrilie. You cannot werride the
field's missing \alue, \alidation criteria, and datatype and its related subclauses (sapiegrde
length, and so on), becauseytlaee part of the core definition of the global field.

. Virtual or computed fields.



define relation(ddl) define relation(ddl)

Syntax: computed-field

local-name]datatypé computed by {alue-expression

This clause defines a computed or virtual field that consists of a formula rather than a storage
location. Notethat the @alue epression must be in parenthesesver stores data in such fields,

but it calculates the formula and retrés requested datalf you do not specify the optional
datatype calculates an appropriate datatype.

Because the computed field depends alues from its cont, it cannot be used in arbitrary
relations. Gdef generates a unique name for the global portion of the fi€lkrefore, a
computed field does not need a name that is unique in the database.

ARGUMENTS
relation-nameNames the relation youamt to create A relation name can contain up to 31 alphanumeric
characters, dollar signs ($), and underscoresHojvever, it must start with an alphabetic character

{ textual-commentary Stores the bragted comments about the relation in the datab@ke.commentary
can include anof the folloving ASCII characters:

. Uppercase alphabetig:—Z

. Lowercase alphabetiec—z

. Numerals0—9

. Blanks, tabs, and carriage returns

. Special characters: ! @ #$ % " & * () _-+E[]<>;:""\|/?.,

class-nameAssociates a security class with the relation or fields within the relaSee. the entry for
define security_class$n this chapter

field-nameSpecifies the name youant for the field in the relationThe define relation statement supports
several types of field definitions, all of which you can use in the same relation definition.

position n Specifies the position (left to right) thglt uses to print when displaying the relatiorhe first
field is position0. For example, if there are three fields, B, andC, with defined positions of 1, 0, and 2,
respectiely, gli displays these fields in the ord&rA, andC.

If you do not specify a positioni uses the order in which the fields are defined or included in the relation.

EXAMPLE

The folloving example defines seral fields with define field statements and then includes them in a
relation:



define relation(ddl) define relation(ddl)

tcs?
define field state char[2];
define field state_nane varying [25];
define field city varying[25];
.Sp
define relation states
{ basic information about states }
state,
st at e_nane,
area | ong,
st at ehood char[ 4],
capitol based on city;

The folloving statement defines\a&eal fields within a relation, defines some computaties, and also includesvesl existing
fields:

tcs?
define relation cities

{ info about capitols and largest cities }

city,

state,

popul ation I ong,

altitude Iong,

| atitude_degrees varying[ 3]
query_nane | atd,

latitude_mi nutes char|[ 2]
query_nane | atm

| atitude_conpass char[ 1]
query_nane |atc,

| ongi t ude_degr ees varyi ng[ 3]
query_nane | ongd,

| ongi tude_mi nutes char[ 2]
query_nane | ongm

| ongi tude_conpass char[ 1]
query_nane | ongc,

latitude conputed by (
latitude_degrees | " " |
latitude_m nutes |
| atitude_conpass),

| ongi tude conputed by (
| ongi tude_degrees | " " |
| ongi tude_nmi nutes |
| ongi t ude_conpass) ;



define relation(ddl) define relation(ddl)

The followving example defines a field and then includes it in a relation underetit names:

tcs?
define field popul ation |ong;
.Sp
define relation popul ations
{ US census data by state }
state,
census_1950 based on popul ation
query_name c¢1950,
census_1960 based on popul ation
query_name c¢1960,
census_1970 based on popul ation
query_name c¢1970,
census_1980 based on popul ation
query_name c¢1980;

SEE ALSO
See Chapter 6 in this manual and the entry&tue-expressionin See also the entries in this chapter for:

. field-attributes
. define field

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.



define security_class(ddl) define security_class(ddl)

NAME
define security_class —establish access control

SYNTAX

define security_clas€lass-name element-commalist
element:= { grantee| view view-name} privilegelist
privilegelist:={ R|W |P|C|D}

VAXIVMS:

grantee:== [uic]

UNIX:
grantee:==[group, usef

APOLLO:
grantee:== usef.projec{.organizatiof.nodq]]

DESCRIPTION
The define security_classtatement establishes access control lists that you can associate with databases,
relations, vievs, and fields in relations and wig.

ARGUMENTS
class-nameNames the security class yowamt to create.A security class name can contain up to 31
alphanumeric characters, dollar signs ($), and underscoresi@wever, it must start with an alphabetic
character

elementDefines the access control for imidiual user or groupYou can use the wildcard character % to
substitute for apof these identifiers.

The priilege list specifies the foleing privileges:

. R (read). Usersvith read prvilege can read the database, relationyyie field.
. W (write). Userswith write privilege can write to the database, relationywie field.
. P (protect). Usersvith protect prvilege can change the security class for the database,

relation, viev, or field.

. C (control). Userswith control privilege can change the metadata for the database,
relation, viev, or field.

. D (delete). Userwith delete pnilege can delete the definition for the relation.

Gdef automatically orderslemententries with the most specific appearing fifstr example, theAPOLLO



define security_class(ddl) define security_class(ddl)

element'%.%.%.%’ comes last, as does th#1S entry ‘[*] .

The more general access controlsrdade the more specificFor example, if you hae read prvilege for a
database, Ut write for a specific relation in that database, you can only read that relation.

Suppose you va a rsonnel database and yoanwto hideSALARY information from most peopleYou
can write to a relation in which there is field that you cannot réaddo o, provided you can write to the
relation, store a record in the relation without referencing vbboten field. The access method
automatically sets that fiekl\alue to missing.If you want to prohibit someone from getting around the
field-level security in this mannedefine the missingalue as an idlid value.

EXAMPLE
The following statements define a database, a security class, a field, and a relation, and associates the
security class with each of the entities:

define database "war_effort.gdb"
security_class staff
{ Thi s database hol ds secret and
top secret information about the
Uni on war effort in 1863. Data protection
was designed at the specific request
of President Lincoln };
.Sp
define security_class cabinet_| evel
{ this class is used on sensitive data that
must be shared with the cabinet }
lincoln. pres.usa pcrwd,
chase. treasury. cabinet r,
sewar d. st at e. cabi net crw,
% % cabi net rw,
view sanitized_data r;
.Sp
define security_class staff
{ used for data that the cabinet is going to |eak
anyway, so why not |let everybody at it? }
lincoln. pres.usa pcrwd,
% % cabi net crw,
% % associ ates r,
% % staff r;
.Sp
define security_class top_secret
{ this stuff is so secret even the president
probably should not see it }
lincoln. pres.usa pcrwd;



define security_class(ddl) define security_class(ddl)

.Sp
define field general char [20];
define field battle char [20];
define field arny char [20];
define field force short;
define field opinion blob;
define field location char [30];
define field destination char [30];
.Sp
define relation armes
{ who is where, and what the president thinks of them}
security_class cabinet _| evel
arny,
general ,
force,
| ocati on,
destination security_class top_secret,
opi nion security_class top_secret;
.Sp
define view sanitized_data of a in armes
with a.location not containing "Virginia"
{ sem -public information }
a.arny,
a. general ;
. Sp
nodi fy relation rdb$security_cl asses
security_class top_secret;

SEE ALSO
See Chapter 7 in this manu&ee also the entries in this chapter for:
. define database
. define relation
. define view
DIAGNOSTICS

See Chapter 3 for a discussion of errors and error handling.



define trigger(ddl) define trigger(ddl)

NAME
define trigger —create irgety check
SYNTAX
define trigger for relation-name
[ store: trigger-action]
[ modify: trigger-action]
[ erase:trigger-action]
DESCRIPTION

The define trigger statement specifies an action that performs automatically wéreym execute a store,

modify, or erase operation on the relation.

The trigger language is based on tfievariant of including theany and statistical xpressions. Itiffers

from theqli variant in the follaving ways:

. Theabort n statement causes the action to terminate with a stagdsofintg_failed The error
message includes the number you supplied in the trigggou are handling errors yourself in a
program, the error number is the fourth lomgevin the statusector

. The trigger language does not include standaloodify or erase statements. Thereforgpu
must include such statements ifoaloop in triggers.

. Context variables are required in the trigger language.

ARGUMENTS

store: trigger-action

modify: trigger-action

erase:trigger-action Specifies that the trigger action is to be performed on a store (or insert), modify (or

update), or erase (or delete) operati&ach of these operations cavéa gparate trigger action.

trigger-action Specifies a statement thakeutes wheneer you store a ng record into the relation, modify

a field from a record in the relation, or erase a record from the relaBdef supplies tw predefined

contet variablesold andnew, for use in the trigger actiorOld refers to the record you are modifying or

erasing, andiew refers to the ng record or ersion you are creating.

See the for information about data manipulation.

EXAMPLES

The following statements define a relation, a triggezecond relation thatdeps an audit trail of agtty on
the first relation, and rejectsweecords without a widget name or modified widgets whosenuenber is
less than the old number:



define trigger(ddl) define trigger(ddl)

no_namne
define database "not_yachts. gdb";
.Sp
define relation widgets
name char [10],
nunber short;
.Sp
define relation | og
nane,
what char [6],
ol d_nunber based on nunber,
new_nunber based on nunber,
when dat e;
.Sp
define trigger for w dgets
store:
store x in |og
if new name missing abort 1

x. what = "STORE";
X. name = new. nane;
X. new_nunber = new. nunber;
X.when = "today";
end_store;
nmodi fy:

store x in |og
i f new nunmber m ssing abort 2

X. what = " MODI FY";
X. name = new. nane;
x. ol d_nunber = ol d. nunber;
X. new_nunber = new. nunber;
X.when = "today";
end_store;
erase:

store x in |og
x. what = "ERASE";
X. name = ol d. nane;
X. ol d_nunber = ol d. nunber;
X.when = "today";
end_store;
end_trigger;

SEE ALSO
See Chapter 8 in this manual.



define trigger(ddl) define trigger(ddl)

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.



define viev(ddl) defineview(ddl)

NAME
define viev —create viev
SYNTAX
define viewview-nameof rse
[ { textual-commentary ]
[ security_classclass-namé
field-name-commalist
field-name:= { included-field|
renamed-field
computed-field
DESCRIPTION
The define viewstatement creates a wialefinition that can include fields from one or more relatiofss.
view can be:
. A simple \ertical subset of a relatioThat is, the vie limits the fields that are displayed.
. A simple horizontal subset of a relatiofhat is, the vier limits the records that are displayed.
. A single relation subseetvtically and horizontally
. A combination of relations subset horizontallgrtically, or both.

You can access wes as if thg were relations.That means you can select records from it, project on its
fields, join it with another relation or itself, orviove it in a wion. Hawever, the source of the we
determines which, if af update operations you can perform on thewie

. If the view is a \ertical subset of a single relation, you can treat it as a relation for botlaletrie
and update purposes, pited that all gcluded fields allev missing \alues.

. If the viev references more than one relation, you cannot update records throughwhe vie
Instead, you must update the records through their source relafibissrestriction goids update
anomalies.

A view can consist of:

. Fields from agy of the source relations, with optionally specified local aiteb



define viev(ddl) defineview(ddl)

Syntax: included-field

dbfield-expressionlocal-attribute§
local-attributes::= { comment$edit-string| query-name
security-clasg positionn }

The dbfield-epressionis a field name qualified by a cortevariable. Thecontet variable is
declared in the record selectioxpeession used to limit the records for thewie

. Fields from agy of the source relations, renamed for use in thev\(ieom dbfield-epression
[local-attributeg).

Syntax: renamed-field

local-namefr om dbfield-epressionlocal-attributeg
local-attributes::= { comment$edit-string| query-name
security-clasg positionn }

Thefrom clause renames a qualified field name for use in thebéing defined, at the same time
retaining all characteristicxeept those you changgpdicitly.

. Virtual fields computed by {alue-pression).

Syntax: computed-field

local-field[datatypé computed by (value-epression [local-attributed }
local-attributes::= { comment$edit-string| query-name
security-clasg position n }

The computed by clause defines a virtual field that is a formula rather than a reference to stored
fields.

For each of the fields in a we you can include a xtual description, anxplicit missing \alue, a query
name, and a security clasExcept forsecurity-classand theposition clause, these local atttites are
described at length in the entry fald-attributesin this chapter

If you specify a local attrilite that conflicts with the attuite defined for the global field in tldefine field

or define relation statement, the local atttite oserrides the global attrite. Theonly attritutes you
cannot oeride are the field validation criteria, and datatype and related subclauses (scglaerse
length, and so on).

ARGUMENTS
view-name Names the vie you want to create.A view name can contain up to 31 alphanumeric
characters, dollar signs ($), and underscoresHojvever, it must start with an alphabetic character



define viev(ddl) defineview(ddl)

rse Selects the records that constitute thewi&ou can use gnoption of the record selectioxgression in
defining the vier except thefirst-clauseand thesorted-clause

See for more information on record selection.

{ textual-commentary} Stores a braaked descripte comment about the wie The commentary can
include ay of the followving ASCII characters:

. Uppercase alphabetig:—Z

. Lowercase alphabetiec—z

. Numerals0—9

. Blanks, tabs, and carriage returns

. Special characters: ! @ #$ % " &* () _-+=[]<>;:""\|/?.,

security _classclass-naméissociates a security class with thewieYou can also treat a wieas if it were
a wser See the entrylefine security classn this chapter for more information.

field-nameSpecifies the field(s) youamt to include in the vie The define view statement supports
several types of field definition, all of which you can use in the same définition.

position n Specifies the position (left to right) thglt uses to print when displaying the wie The first field
is at position0. For example, if there are three fields, B, and C, with defined positions of 1, 0, and 2,
respectiely, gli displays these fields in the ord&rA, andC.

If you do not specify a positionli uses the order in which the fields are defined or included in tive vie

EXAMPLES
The following statement defines anical subset of a relation (that is, subset of fields):

. tcs?
define view geo_cities of c in cities

{ subset of CITIES with geographic data only }

c.city,

c.state,
c.altitude,
c.latitude,
c. | ongi t ude;

The followving view defines both a horizontal andntical subset (that is, selected records and a subset of fields):

. tcs?
define view mddle_anerica of ¢ in cities



define viev(ddl) defineview(ddl)

with | ongi tude_degrees beween 79 and 104 and
| atitude_degrees between 33 and 42

c.city,

c.state,

c.altitude;

The folloving view defines a horizontal subset of a relation by usingxastential qualifier to test another relation for fiellues
from the first relation:

tcs?
define view ski_states of s in states
wi th any shush_boomin ski_areas
with s.state = shush_boom state
s.state,
s.capitol,
s. area,
s. popul ati on;

The folloving view joins two relations, using alues from fields in both relations to compute population densities for each decade’
census:

tcs?
define view popul ati on_density of p in popul ations

cross s in states over state

p.state,

density_1950 conputed by
(p.census_1950 / s.area),

density_1960 conputed by
(p.census_1960 / s.area),

density_1970 conputed by
(p.census_1970 / s.area),

density_1980 conputed by
(p.census_1980 / s.area);

SEE ALSO
See Chapter 6 in this manual and the entry&tue-expressionin See also the entries in this chapter for:

. field-attributes
. define security_class

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.



delete(dd!) delete(dd!)

NAME
delete —erase metadata
SYNTAX
delete{ field field-nam¢g index index-name|
relation relation-name| security_classclass-namé
trigger for relation-name| view view-name};
DESCRIPTION
The delete statement erases the specified database eamitly all data associated with that entity
Therefore, you must beewy sure that you ant to delete something before you do it.
RULES
(1) If you want to delete a database:
. For VMS, use thedeletecommand.
. For UNIX systems, use then command.
. For AEGIS systems, use thdif command.

(2) You can delete a field thataw defined in @efine field or define relation statement. Hwoever,
because fields are included in a relation, you must first delete the field from each relation in which
it is included. To do 0, you must use thdrop-clauseoption of themodify relation statement.
The following statements delete a field from a relation and then from the database:

. tcs?
nodi fy relation states
drop statehood;
.sp
delete field statehood;

You must eplicitly delete a field defined in @efine relation statement after dropping it fromyanther relations in which it is used.

For example, suppose you defined the fi@liRTH_DATE in an EMPLOYEES relation, subsequently included it in

another relation, and then decided not &k it. The follonving sequence deletes the field from all its

instances and then finally from the database itself:
. tcs?

nmodi fy rel ation enpl oyees
drop birth_date;

.sp

nmodi fy rel ati on denopgraphi cs
drop birth_date;



delete(dd!) delete(dd!)

.Sp
delete field birth_date;

Do not drop fields from relations unless you are sure that nothing else depends on thé&rajatang fields causes programs that
depend on them tail.

(3) You can delete anindex you want, hut if you delete an indethat someone else is using, the other
users program will get an unreegrable error The folloving statement deletes an ixde

tcs?
del ete index idx4

(4) You can delete anrelation you vant, lut if you delete a relation that someone else is using, the
other uses program will get an unreserable error Because thalelete rlation statement
removes a elation and all its records, you should use this statement with cadienfolloving
statements delete relations:

tcs?
del ete rel ati on gudgeons;
.sp
del ete relati on non_eeoc_approved_data

(5) You can delete a security class without first deleting it wieeré is referenced. Thebjects
associated with the deleted security class are then unprotected.

(6) treatsviews much lile relations. Havever, because a vie is anly a virtual relation, the &fct of
deleting a viev that is being used by someone else is less catastrophic than deleting a relation that
is being usedIn general, when you delete awjeother users should not encountey @noblems
if they are already running their programbslowever, if they start up a program that references the
deleted viey, the programdils when it tries to compile the request that mentions that vie
The following statements delete we:

tcs?
del ete view popul ati on_density;
.sp 0.5
del ete view geo_cities
.sp 0.5
delete view riv_vu
SEE ALSO

See Chapter 8 in this manual.



delete(dd!) delete(dd!)

DIAGNOSTICS
See the entry fagdefin this manual.



field-attributes(ddl) field-attribtes(ddl)

NAME
field-attritutes —defining field attriltes
SYNTAX
field-attributes ::= datatype[ comments| edit-string | missing-value|
guery-name| security-class| valid-if ]...
DESCRIPTION
The field-attributes clause describes the characteristics of fields defined or modified by theirfgllo
statements:
. define field(all of the abwe dauses rceptsecurity-clasy
. modify field (all of the abwe dauses)
. define relation (all of the abwe dauses)
. modify relation (commentandsecurity-classlauses only)

A syntactic and semantic description of each of these clausew.follo

SEE ALSO
See Chapters 5 and 6 in this manu@ke also the entries in this chapter dgdef, define field define

relation, define view modify field, and modify relation, and the discussion of thepnditional-expression
in



field-attributes(ddl) field-attribtes(ddl)

Syntax: datatype

datatype::= { short [scale-claus|

long [scale-clausk | float | double |
char[n] [subtypé | varying[n] [subtypé |
date | blob-clause}

scale-clause:= scale[-]n
blob-clause:= blob [subtypg[segment_lengtm]
subtype::= sub_type { text | blr | fixed | acl | -n }

Description: datatype

Thedatatypeclause specifies the datatype of a fidids the only required field attnitbe.

This table lists supported datatypes by language.

Datatype BASIC C COBOL FORTRAN Pascal PL/I
short word short s9(4) comp| I*2 integer fixed
binary(15)
long long long s9(9) comp| I*4 integer32 fived
float single float comp-1 real real float
binary(24)
double double double comp-2 double double float
precision binary(53)
char[n] string char[n] pic x (n) character array[1...n] character(n
dimension(n) | othar
varying[n] | string char[n] pic x (n) character array[1...n] character(n
dimension(n) othar
date gds_$quad_t| gds_$quad s9(18) | I*4 gds_$quad | gds_$quad
dimension(2)
blob gds_$quad_t| gds_$quad s9(18) 1*4 gds_$quad | gds_$quad
dimension(2)




field-attributes(ddl) field-attribtes(ddl)

This table lists the datatypes by size and range/precision.

Datatype | Size Range/Precision

short 16 bits | -32768 to 32767

long 32 bits | -2**31 to (2**31)-1

float 32 bits | approx. 7 decimal digits

double 64 bits | approx. 15 decimal digits

char n bytes | Oto 32767 characters

varying varies Oto 32767 characters

date 64 bits | 1 January 100 to 11 December 5941

blob 64 bits | none

Both the date and blob datatypes are representaa djpaggds $quad a quantity for which allocates 64
bytes of storageHowever, this quantity is functionally diérent for dates and blobs:

. For the date datatypegyds_$quadrepresents the date encoded in 64 bitke GDML library
includes tvo routines,gds_$encodeand gds_$decodefor date manipulationSee the for more
information.

. For the blob datatypeyds_$quadrepresents an identifier that points to the actual blob ddta.

format of the data depends on the application.
The blob identifier stored in the record is a 64-bit quanfitye blob itself is of unlimited size; a
blob can gceed 65,535 bytes and is limited only by the amount pdiphl storage\ailable.

Varying string is a character datatype that includes a count at ¢frenb®y. Thisdatatype is not directly
supported by some host languages.

NOTE

When you use an datatype that is not supported by your host language, automatieeily soch fields to
equivalent types that are supportedo ensure that ariables you define match the datatypes in database
fields, usebased onclause to establish the datatype of yoariables. Seéhe for more information about
thebased onclause.

Arguments: datatype
scale-clausespecifies the pmer of 10 by which multiplies the stored iges \alue for use byjli, COBOL,
andPL/I.



field-attributes(ddl) field-attribtes(ddl)

For example, a ngaive <ale of two means that there should be a decimal poiotplaces to the left of the
digits.

blob-clauseProvides the characteristics of blob field§he optionalsegment_lengthclause specifies a
segment length that system components use doious purposeskor example,gpre uses this &lue to set

up a luffer for data transfer between the calling program and thelanges the ggnent length to format
its display

Gdef provides a dedult value of 80 if you do not include treegment_lengthclause. Ifyou update the
system relations directly and leathe sgment length missingypre andgli supply lengths of 512 and 40,
respectiely, for their avn purposes.

subtype-clausé&or blob fields, there are three predefined subtyfeed; blr (request language statements),
and acl (access control lists)QIi uses the subtype to determinenhid should display a blab If your
application requires special blob handling, you can define ywwaorsoibtype; the range of gative values
from -1 to -32768 is reseed for users.

For char andvarying fields, thefixed subtype is defined as a eenience forC programs. &x strings are
passed toC as null-terminated strings unless you specify skiing switch when you preprocess the
program. Ifyour application requires that a field contain #®€ll binary \alues that may include nulls,
declare the field to ke thefixed subtype so it wilhotbe truncated at the first null byte.

Example: datatype
The following statements define fields withrious datatypes:

define field tolerance | ong scale -2;
. Sp
define field text_blurb blob sub_type text
segnent _| ength 60;
. Sp
define field price |ong
valid if (price > 0);

. Sp
define field manufacturer char[10]
valid if

(manuf acturer ne "SLEAZOLA" and
manuf act urer ne " SHODTECH' and
manuf act urer ne " SCHLOKHAUS") ;

. Sp

define field encrypted_key char[ 20]

sub_type fixed;
. Sp
define relation parts



field-attributes(ddl) field-attribtes(ddI)

item code char[6],

item nanme char|[25],

manuf acturer char[ 10],

bl urb bl ob segnment _| ength 60,
price |ong,



field-attributes(ddl) field-attribtes(ddl)

Syntax: comments

{ textual-commentary

Description: comments
Thecommentglause lets you store bragtkd comments about the field in the database.

Arguments: comments
textual-commentanA comment can include grof theseASCII characters:

. Uppercase alphabetig:—Z

. Lowercase alphabetiec—z

. Numerals0—9

. Blanks, tabs, and carriage returns

. Special characters: ! @ #$ % " & * () _-+E[]<>;:""\|/?.,

Example: comments
The following statements define fields with comments:

tcs?
define field standard_date date { all-purpose date field };
.sp
define relation parts
itemcode char[6] { al phanuneric identifier },
itemnanme char[25] { abbreviated product nane },
manuf acturer char[10] { aka supplier },
bl urb bl ob segnent | ength 60
{ this field stores the
descriptions of the
items in inventory },
price |ong,



field-attributes(ddl) field-attribtes(ddl)

Syntax: edit string

edit_string " edit-character.."

edit-character:== see the tables b&lo

Description: edit string

The edit-stringclause specifies an alphabetic, numeric, or date format for a field or compluted @nly
gli uses edit strings.

Alphabetic and Miscellaneous Edit String Characters

Character Meaning
A Any dphabetic character
X Any dphabetic character
B A blank space.
'string’ Printthe quoted string.
"string"

Date Edit String Characters

Character Meaning

Y (integer) The year from right to left. For 1987,y(1) yields 7,
y(2)yields87, and so on.

M (integer) The name of the monthThe int@er specifies ho
mary of the characters in the month name to print.

N (integer) The numeric monthThe best alue for the intger is
2.

D (integer) The day of the monthThe best alue for the intger
is 2.

W (integer) The name of the day of the weelhe inteer
specifies hav mary of the characters in the day name
to print.

B A blank space.




field-attributes(ddl) field-attribtes(ddl)

Numeric Edit String Characters

Character | Meaning

9 An ordinary digit.

* A leading asterisk (for checks).

y4 A leading digit or blank if the leading position is zero.
H Hexadecimal representation of character

+ Leading plus signPrints leading sign for posie

and ngative rumbers.

- Leading minus signPrints leading sign for gative anly.

$ Leading dollar signMultiple dollars sign float.
(@) Paentheses to be printed aroundas/e rumbers.
DB Debit.

CR Credit.

Decimal point.

B Blank space.

, Comma for thousands, millions, etc.

NOTE

Leading signs (dollar sign, plus, and so onkgtal a dharacter spaceTherefore, the numbef123.45’
with an edit string of‘'$$$.99” overflows, printing ‘23.45” on dd versions ofgli and “***' * on newer
versions.

Example: edit string
The follonving statements define a database and three relations, each contaiaia fedds with edit
strings:

. ddl _134. gdI
define database "stuff.gdb";
define relation budgets
bl | ong,
b2 long edit_string "999, 999",



field-attributes(ddl) field-attribtes(ddI)

b3 long edit_string "((999,999))",
b4 long edit_string "-22z, 7722, 279" ;

define relation enpl oyee_stuff

soci al _security char [9] edit_string "xxx-XX-Xxxxx",
phone_nunber char [10] edit_string "(xxx)Bxxx-xxxx",
salary long edit_string "HHHHHHHHHBBB (wow! )’ ";

define relation fam|y_dates
name varying [10],
birth date edit_string "w(3), bd(2)bm(12)by(4)",
weddi ng date edit_string "d(2)bn(2)by(4)",
awar eness date edit_string "y(4)";



field-attributes(ddl) field-attribtes(ddl)

Syntax: missing \alue

missing_\alue[is] { fixed-point-numbefquoted-string

Description: missing \alue
The missing-valueclause preides a literal string (numeric or character) that is displayed ifah@evis
stored for that fieldIf you store that alue in the field, marks the field as missifighe missing &lue must
be legitimate \alue for the field datatype.

Arguments: missing alue
fixed-point-numbeA number that is displayed as the missirajue. Thenumber must notxeeed the
length of the field.For integer datatypes, the number cannot include a decimal point unless the field has a
scale &ctor For floating datatypes, the number should include a decimal point.

guoted-stringA quoted literal gpression that is displayed as the missialyi®. Thestring must notxceed
the length of the field.

Example: missing \alue
The following statements define fields withpdicit missing \alues:

define field price float
m ssing_value is -15.75
valid if
(price > 0 or
price mssing);
.sp
define field headwater_state
m ssing_value is "??";

10



field-attributes(ddl) field-attribtes(ddl)

Syntax: query name

guery_name[is] alternate-name

Description: query name
The query-nameclause preides an alternate field name for usejin You can reference a field by its full
name or by the query name.

You may find that the longer the name, the moreljikusers are to mistype itHowever, for reasons of
internal documentation, you mightamt to leep the name as descrigtiss possible. Thereforeyou can
use a query name to rename the field to something easier to type.

Arguments: query name
alternate-nameA query name can contain up to 31 alphanumeric characters, dollar signs ($), and
underscores (_)However, it must start with an alphabetic character

Example: query name
The following statement defines a field with a query name:

define field | ongitude_degrees char[2]
query_nane | ongd;

The folloving statement defines a relation and assigns a query name fieltls:

define relation cities

{ largest 200 popul ation centers }

city,

state,

popul ati on,

| atitude_degrees char[2]
query_nane |atd,

latitude_m nutes char[ 3]
query_nane | atm

| atitude_conpass char[ 1]
query_nane |atd,

| ongi tude_degrees char[ 2]
query_nane | ongd,

| ongi tude_mi nutes char[ 2]
query_nane | ongm

| ongi tude_conpass char|[ 2]
query_nane | ongc;

11



field-attributes(ddl) field-attribtes(ddl)

Syntax: security class

security _classclass-name

Description: security class
Thesecurity-classlause associates a security class with a field in a relation or.a vie

You can associate a security class with a field only defne relation, modify relation, define view or
modify view statement. ¥u cannot use aecurity-classclause in adefine field statement, because the
security rules apply to a field in a relation, and are not a global characteristic.

Arguments: security class
class-nameNames the security class yowamt to associate with the fieldThe security class must be
defined in alefine security _classtatement.

Example: security class
The following statement associates a security class with a field in a relation:

tcs?
define security_class I nu
{ limted netadata update. This class keeps everyone
but Zaphod from assigning rights. }
zaphod pdrwec,
% zaphod rw,
% % gds r,
zaphod. grd. gds p,
view | ess_of _a_secret r;

define relation rl security_class | nmu
no_nane char [10];

12



field-attributes(ddl) field-attribtes(ddl)

Syntax: valid if

valid_if (boolean-&pression

Description: valid if

The valid-if clause proides a field-lgel integrity criterion that checks when it stores the record or updates
the field in a record.

If the nev value fils the test, the field assignmeatl$. Becaus¢he \alidation criteria are stored in the
database, tlyeeliminate the need for such checks in the programs that access the database.

A validation epression dilers from a trigger in that a trigger has full cotitecan access fields inyn
relation, and can perform update%.validation epression can only reference the field beiatidated and
literal values.

Arguments: \alid if
boolean-&pressionA valid Boolean gpression. Sethe entry foboolean-&pressionin the or the

Example: valid if
The following statements define fields withlidation epressions:

define field price |ong
valid if (price > 0 or price mssing);
.sp
define relation manufacturers
manuf act urer char[ 10]
valid if
(manuf acturer ne "SLEAZOLA" and
manuf act urer ne " SHODTECH' and
manuf acturer ne " SHLOKHAUS" and
manuf acturer not m ssing),

13



modify database(ddl) modify database(ddl)

NAME
modify database —modify a database

SYNTAX

modify databasequoted-filespef{ textual-commentary ]
[ security_classclass-namé
[ drop security clasg;

DESCRIPTION
Themodify databasestatement specifies the name of the database for whichgmutevchange metadata.

Themodify databasestatement must be the first statement in the source file or ingdéto

ARGUMENTS
guoted-filesped valid file specification enclosed in single () or double (") quotation mdfkbe shell you
regularly use is case-sensij make aure that you alays reference the database fiaetly as it is spelled in
thedefine databasestatement.

The file specification can contain the full pathname to another node in therketwile specifications for
remote databasesvaithe folloving form:

Syntax: Remote Database File Specification

VMS to ULTRIX:
node-namefilespec

VMS to non-VMS and non-ULRIX:
node-naméilespec

Within Apollo DOMAIN:
/Inode-naméilespec

All Else:
node-namsdilespec

{ textual commentary Stores the bragted comments about the database in the databhgecommentary
can include anof the folloving ASCII characters:

. Uppercase alphabetié:—Z
. Lowercase alphabetiee—z
. Numerals0—9



modify database(ddl) modify database(ddl)

. Blanks, tabs, and carriage returns
. Special characters: ! @ #$ %~ &* () _-+=[]<>;:""\|/?.,

class-nameAssociates a security class with the datab&ee the entry fodefine security_classn
this chapter for more information.

EXAMPLE
The following statements each appear as the first statement in a source file used to define or modify a
database:

nmodi fy database "/usr/igor/war_effort.gdb"

{ netadata | ast updated 7 Novenmber 1985 }
security_class | nu;

. Sp

nmodi fy database "atl as. gdb";

. Sp

nmodi fy database "/usr/hector/dingies.gdb";

SEE ALSO
See Chapter 8 in this manual.

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.



modify field(ddl) modify field(ddl)

NAME
modify field —change global field characteristics

SYNTAX

modify field field-name field-attribtes

DESCRIPTION
Themodify field statement changes the characteristics okestiieg field.

When you modify field characteristics, does not change the characteristics on disk immeldistieqd, it
changes the characteristics when someone updates theMigdahwhile, filters” unchanged alues so that
they reflect the updated characteristics untilthee actually changed.

If you want to change the characteristics of a field defined inside a relation, you may not be able to change
it within that relation. For example, plgsical attrilutes, such as the datatype, can be changed only with the
modify field statement. Thigestriction is due to the ay gdef deals with fields defined in relatiorin

short, fields defined in relationbgally defined fieldsare automatically added to the list of fields in the
databasegd]obally defined fields Althoughyou may define a field inside a relatiqguef disregards the

source of the definition and mek it a globally defined field as if it were defined withledine field
statement.

Therefore, if you want to change athing other than the field’position, commentary as a part of that
relation, query name, or security class as a part of that relation, you must do so withdifefield
statement.Gdef then malks the change for all uses of that global field in all relations of the database.

Finally, if you change the datatype or length of fields upon whiotngputed byfield is based, the length

of the computed field does not change automaticdlhis does not cause a problem if you decrease the
size of the base fieldsubwill cause a data ceasion error if you increase them, particularly if the
computation consists of concatenated stringse preferred &y to fix this problem is to delete and re-
create the computed fieldThe ‘quick and dirty’ way is to manually increase thealue of
RDB$FIELD_LENGTHof theRDB%FIELDSrecord for the computed field.

ARGUMENTS
field-nameNames the field you ant to create or the field youawt to modify

field-attributes Specifies the datatype, length or scale if appropriate, amdrateoptional field
characteristics. &u can change thexteial description of the field or its query namEor detailed
information about the syntax and semantics of these options, see the efigtgd-fattributesin this chapter

EXAMPLE
The following statements modify fields:

. tcs?
modi fy field zip char[9];



modify field(ddl) modify field(ddl)

.Sp
modi fy field headwater_state
m ssing_value is "??";
.Sp
modi fy field price | ongword;
SEE ALSO
See Chapter 8 in this manu&ee also the entries in this chapter for:

. field-attributes

. modify relation

DIAGNOSTICS
See Chapter 3 for a discussion of errors and error handling.



modify relation(ddl) modify relation(ddl)

NAME
modify relation —-modify a relation
SYNTAX
modify relation relation-namg { textual-commentary ] [ opemtion-commalist;
opeiation ::= { add field field-namg[field-attributes|
drop field field-namqg
modify field field-namdfield-attributes|
drop security_clasgsecurity-class-nanjg¢
security_classsecurity-class-namé
DESCRIPTION
The modify relation statement can change a relatiooadmment field, complement of fields, and local field
characteristics.
ARGUMENTS

relation-nameldentifies the relation youant to modify

{ textual-commentary Stores comments about the relation in the databalse textual-commentargan
include an of theseASCII characters:

. Uppercase alphabetig:—Z
. Lowercase alphabetie:—z
. Numerals0—9
. Blanks, tabs, and carriage returns
. Special characters: ! @ #$ % " &* () _-+E[]<>;:""\|/?.,
add field field-nameAdds a field to the relation:
. If the field has already been defined in the datalfadd;attributes can specify the

position of the field, teual description of the field, a query name for use withand a
security class.

. If the field does notést elsevhere, you must specify a datatypéu can also specify an
explicit missing \alue, a wlidation epression, the position of the field,xteal
description of the field, a query name for use \lthand a security class.

The addition of fields to a relation is almost identical to the inclusion of fields when you define the relation.
See the entry fadefine relation in this chapter for more information.

drop field field-nameRemares the named field from the relationVhen you delete a field from a relation,
other users should not encountey problems if thg are already running their programklowever, if they



modify relation(ddl) modify relation(ddl)

start up a program that references the deleted field, the progilarwifien it tries to compile the request
that mentions that field.

You cannot delete fields that are used inmgebased on this relation without first deleting the field from
those vievs.

modify field field-namedentifies the field whose relation-specific characteristics yamt ¥o changeYou
can change only the position of the field, thaual description, the query name, the security class of the
field, and the field on which the local field is based (for fields defined withattexl onoption).

You cannot change the datatype, the missialye, or the alidation expression. Ifyou want to change one
of these attribtes, you must do so with tieodify field statement.

drop security_clasgsecurity-class-namdremoves the named security class from the relatidiyou do
not specifysecurity-classgdefremoves any scurity class associated with the relation.

security_classsecurity-class-namaAssociates the specified security class with the relation.

EXAMPLE
The folloving example modifies a relation by adding fields, dropping fields, and modifying fields:

. tcs?
nmodi fy database "test_atl as. gdb";
. Sp
modify relation cities
add field year_incorporated char[4]
query_nane inc
position 6,
add field type_of _government char[1]
query_nane gov

valid_if
(type_of _government = "C' or
type_of _governnent = "M or

type_of _governnent mi ssing),
drop field popul ation;

modi fy relation states
security_cl ass cabinet_| evel;

SEE ALSO
See Chapter 8 in this manu&ee also the entries in this chapter for:
. field-attributes



modify relation(ddl)

. define relation
. modify field
DIAGNOSTICS

See the entries f@gdefin this chapter

modify relation(ddl)



modify trigger(ddl) modify trigger(ddl)

NAME
modify trigger —modify intgrity check

SYNTAX

modify trigger for relation-name
[ store: trigger-action]

[ modify: trigger-action]

[ erase:trigger-action]

DESCRIPTION
The modify trigger statement changes the action that performs automatically wdneymu execute a
store, modifyor erase operation on the relation.

ARGUMENTS
{ textual-commentary} Stores or modifies comments about the trigger in the databidsetextual-
commentaryan include aynof theseASCII characters:

. Uppercase alphabetid—Z

. Lowercase alphabeticA—Z

. Numerals: 0—9

. Blanks, tabs, and carriage returns

. Special characterst @ #$% " &* () _-+=""[]<>;:""\|/].,
store:
modify:

erase:Changes the trigger action performed on a store (or insert), modify (or update), or erase (or delete)
operation. Eacbf these operations canveaa gparate trigger action.

trigger-action Specifies asDML statement that@cutes wheneer you store a ne record into the relation,
modify a field from a record in the relation, or erase a record from the rel&@um the for information
aboutGDML data manipulation.

EXAMPLES
The following statements modify the erase trigger associated with a relation:

. tcs?
nodi fy database "not_yachts. gdb";
.sp
nodi fy trigger for widgets
erase:



modify trigger(ddl)
store x in |og
X. what = "GONZO';
X. name = ol d. nane;
X. ol d_nunber = ol d. nunber
X.when = "today";
end_store
end_trigger
SEE ALSO

See Chapter 8 in this manual.

DIAGNOSTICS

See Chapter 3 for a discussion of errors and error handling.

modify trigger(ddl)



modify view(ddl) modify view(ddl)

NAME
modify view —modify view
SYNTAX
modify view view-nam¢{ { textual-commentary ] [opelation-commalisi
opemtion ::= { drop field field-namd
drop security_clasgsecurity-class-nanjg¢
security_classsecurity-class-namé
DESCRIPTION
Themodify view statement:
. Drops a field from a vie
. Drops a security class for a vie
. Adds a security class for the wie
ARGUMENTS

view-nameldentifies the vier you want to change.

{ textual-commentary} Stores the bradted comments about the widgn the databaseThe textual-
commentaryan include ayof the followving ASCII characters:

. Uppercase alphabetig:—Z

. Lowercase alphabetie:—z

. Numerals0—9

. Blanks, tabs, and carriage returns

. Special characters: ! @ #$ % " &* () _-+E[]<>;:""\|/?.,

drop field field-nameRemawes the named field from the wie but not from the source relation(sYou
cannot delete fields that are used inwgebased on this wie without first deleting the field from those
views.

drop security_class[security-class-nanjeRemoves the named security clasdf you do not specify
security-classgdefremoves any scurity class associated with thewie

security _classsecurity-class-namAssociates the specified security class with thev.vie

EXAMPLES
The following statement renves a field, drops a security class, and addsve seeurity class:



modify view(ddl) modify view(ddl)

tcs?
nmodi fy view geo_cities
{ new comment goes here }
drop field altitude,
drop security_cl ass,
add security_class top_secret;
SEE ALSO
See Chapter 8 in this manu&ee also the entries in this chapter for:
. field-attributes
. define view
. define security_class
DIAGNOSTICS

See Chapter 3 for a discussion of errors and error handling.



