Free Pascal
Programmers’ manual

. __|
Programmers’ manual for Free Pascal, version 2.0.0
Document version 2.0
May 2005

Michaél Van Canneyt

Contents

0.1 Aboutthisdocument. 12
1 Compiler directives 13
1.1 Localdirectives. o e 13
1.1.1 $AOor$ALIGN:AlignDatao oo 13
1.1.2 $ASMMODEAssembler mode (Intel 80x86 only). 13
1.1.3 $Bor $BOOLEVAL Complete boolean evaluation. 14
1.1.4 CorASSERTIONS Assertion support v v oo v v v .. 14
1.1.5 $CHECKPOINTERCheck pointervalues. 14
1.1.6 $DEFINE:Defineasymbol. 15
1.1.7 $ELSE: Switch conditional compilation. 15
1.1.8 $ELSEC: Switch conditional compilation 15
1.1.9 $ENDC: End conditional compilation. 15
1.1.10 $ENDIF : End conditional compilation. 15
1.1.11 $ERROR Generate errormessage« « v v v v v v v e e 16
1.1.12 $F :Farornearfunctions. 16
1.1.13 $FATAL: Generate fatal errormessage. 17
1.1.14 $FPUTYPE: Select coprocessortypeo oo v v v oo .. 17
1.1.15 $GOTQ SupportGoto andLabel 17
1.1.16 $Hor $LONGSTRINGSUse AnsiStrings oo oot .. 18
1.1.17 $HINT : Generate hintmessage. 18
1.1.18 $HINTS : Emithints. 18
1.1.19 $IF : Start conditional compilation. L. 18
1.1.20 $IFC : Start conditional compilation. 18
1.1.21 $IFDEF Name: Start conditional compilation 18
1.1.22 $IFNDEF : Start conditional compilation 18
1.1.23 $IFOPT : Start conditional compilation 19
1.1.24 $IMPLICITEXCEPTIONS : Do not generate finalization code 19
1.1.25 $INFO : Generateinfomessage. 19
1.1.26 $INLINE :Allowinlinecode.. 19
1.1.27 $INTERFACES: Specify Interface type.. 19

CONTENTS

1.1.28 $I or $IOCHECKS: Input/Outputchecking 20
1.1.29 $I or$INCLUDE: Includefile 20
1.1.30 $I or $INCLUDE: Include compilerinfo. 21
1.1.31 $I1386_XXX : Specify assembler format (Intel 80x86 only) 21
1.1.32 $L or $LINK : Link objectfile. 22
1.1.33 $LINKLIB :Linktoalibrary 22
1.1.34 $Mor $TYPEINFO: Generate typeinfo 23
1.1.35 SMACROAIlow use of macros.. v v v v i i i 23
1.1.36 $SMAXFPUREGISTERSMaximum number of FPU registers for variables 23
1.1.37 $MESSAGEGenerateinfomessage. L 23
1.1.38 $MMX Intel MMX support (Intel 80x86only) 24
1.1.39 $NOTE: Generate note MmesSsage v v v v v v v v v e e e e e 24
1.1.40 $NOTES Emitnotes. o i e e e e e 24
1.1.41 $OUTPUT_FORMATSpecify the output format. 25
1.1.42 $P or SOPENSTRINGSUseopenstrings.o v oo .. 25
1.1.43 $PACKENUMMinimum enumerationtype size. 25
1.1.44 $PACKRECORDSAlignment of record elements. 26
1.1.45 $Q $OVERFLOWCHECHKSserflow checking 26
1.1.46 $Ror SRANGECHECKSRangechecking 26
1.1.47 $SATURATION Saturation operations (Intel 80x86 only). 27
1.1.48 $SETC: Define and assignavaluetoasymbol 27
1.1.49 $STATIC : Allow use ofStatic keyword. 27
1.1.50 $STOP: Generate fatalerrormessage 27
1.1.51 $T or $STYPEDADDRESSTyped address operator (@) 28
1.1.52 $UNDEF Undefineasymbol. 28
1.1.53 $V or SVARSTRINGCHECKSVar-string checking 28
1.1.54 $WAIT: Wait forenterkey press. o oo 28
1.1.55 $WARNING Generate warningmessage v v v v v v v v .. 28
1.1.56 SWARNINGSEmMitwarnings v v v i e e e 28
1.1.57 $X or SEXTENDEDSYNTAXExtended syntax 29
Globaldirectives e 29
1.2.1 $APPID : Specify applicationID.. 29
1.2.2 $APPID : Specify applicationname.. 29
1.2.3 $APPTYPE: Specify type of application.. 29
1.2.4 $CALLING: Default calling convention 30
1.2.5 $COPYRIGHTspecify copyrightinfo. 31
1.2.6 DorDEBUGINFQ Debuggingsymbols. 31
1.2.7 $DESCRIPTION: Application description. 31
1.2.8 $E:Emulationof coprocessor e 31

Intel 80X86 version. 31

CONTENTS

Motorola 680X0 Version. 31

129 $G:Generate 80286code 32
1.2.10 $INCLUDEPATH Specify include path.. 32
1.2.11 $L or SLOCALSYMBOLSLocal symbol information 32
1.2.12 $LIBRARYPATH: Specify librarypath. 32
1.2.13 $Mor SMEMORYMEeMOry SizeS. v v v v v i i e e e e e 33
1.2.14 $MODE Set compiler compatibilitymode 33
1.2.15 $N: NUMEFC Processing . . . « v v v v v v o et e e e e 33
1.2.16 $0O: Overlay code generation. oo o v v i 33
1.2.17 $OBJECTPATH Specify objectpath. 33
1.2.18 $PROFILE: Profiling 34
1.2.19 $S:Stackchecking 34
1.2.20 $SMARTLINK: Use smartlinking. 34
1.2.21 $THREADNAMESet thread name in Netware 34
1.2.22 $THREADING Allow use of threads. 35
1.2.23 $UNITPATH: Specify unitpath. 35
1.2.24 $VERSION: Specify DLLversion. 35
1.2.25 $Wor $STACKFRAMESGenerate stackframes. 35
1.2.26 $Y or S(REFERENCEINFOInsert Browser information. 36

2 Using conditionals, messages and macros 37
2.1 Conditionals e 37
2.1.1 Predefinedsymbols. o 38

2.2 MACIOS o e 38
2.3 Compiletimevariables 39
2.4 Compiletime expressions. o e e e e e 40
24.1 Definition. 40
242 Usage. 41

25 MESSAJES. i 45
3 Using Assembly language 47
3.1 Intel80x86 Inlineassembler a7
3.1.1 Intelsyntax. e e 47
312 ATET SYNAX. « v v v v v e e e e e e e 49

3.2 Motorola 680x0 Inline assembler. oL 51
3.3 Signaling changedregisters 52
4 Generated code 53
4.1 UNitS. e e e e 53
4.2 Programs. o e e e e e e 54

CONTENTS

5 Intel MMX support 55
5.1 Whatisitabout?. e 55
5.2 Saturation SUpport. e e e 56
5.3 Restrictions of MMX support 56
5.4 Supported MMXoperations. 57
5.5 Optimizing MMX SUpport 57

6 Code issues 58
6.1 RegisterConventions 58

6.1.1 accumulatorregister e 58
6.1.2 accumulator 64-bitregister. Lo 58
6.1.3 floatresultregister. 58
6.1.4 selfregister. e 58
6.1.5 framepointerregister. 58
6.1.6 stackpointerregister 59
6.1.7 scratchregisters. 59
6.1.8 Processor mappingofregisters 59

Intel 8OX8B version. 59

Motorola 680X0 Version. 59

6.2 Namemangling 60
6.2.1 Mangled namesfordatablocks. 60
6.2.2 Mangled namesforcodeblocks. 61
6.2.3 Modifyingthemanglednames. 63

6.3 Callingmechanism. 63
6.4 Nested procedure and functians., 64
6.5 Constructor and Destructorcalls. o 64
6.5.1 objects. e 64
6.5.2 classes. 65

6.6 Entryandexitcode 65
6.6.1 Intel 80x86 standard routine prologue / epilogue 65
6.6.2 Motorola 680x0 standard routine prologue / epilogue. 66

6.7 Parameter passing.o 66
6.7.1 Parameteralignment. o 66

6.8 Processorlimitations. 67

7 Linking issues 68

7.1 Usingexternalcodeandvariables. 68
7.1.1 Declaring external functions or procedures. 68
7.1.2 Declaringexternalvariables 69
7.1.3 Declaring the calling convention modifier. 71
7.1.4 Declaring the external objectcode 71

CONTENTS

Linkingto an objectfile oo 71
Linkingtoalibrary. 72

7.2 Makinglibraries e 73
7.2.1 Exportingfunctions. 73
7.2.2 Exportingvariables 74
7.2.3 Compilinglibraries 74
7.2.4 Unitsearchingstrategy. i 75

7.3 Usingsmartlinking. e 75
Memory issues 77
8.1 Thememorymodel.. 77
8.2 Dataformats e 78
8.2.1 integertypes. 78
8.2.2 chartypes 78
8.2.3 booleantypes 78
8.2.4 enumerationtypes 78
8.2.5 floating pointtypes 79
single e 79

double. 80

extended 80

COMP . o o e e e e e e e e e e e e e e e 80

real 80

8.2.6 pointertypes. 80
8.2.7 StiNgtypes. 81
ansistring types e 81
shortstringtypes. e 81
widestringtypes e 81

8.2.8 settypes 81
8.2.9 arraytypes. 81
8.2.10 recordtypes e e 82
8.2.11 objecttypes 82
8.2.12 classtypes. 82
8.2.13 filetypes 83
8.2.14 proceduraltypes 84

8.3 Dataalignment. 84
8.3.1 Typed constants and variable alignment 84
8.3.2 Structured typesalignment. 85

8.4 Theheap e e 85
8.4.1 Heapallocationstrategy 85
8.4.2 Theheapgrows. i 86

CONTENTS

8.4.3 Debuggingtheheap. 86

8.4.4 Writing yourown memory manager.o e 87

8.5 Usingposmemory under the Go32 extender. 89

9 Resource strings 91
9.1 Introduction. e 91
9.2 Theresourcestringfile 91
9.3 Updatingthestringtables. 93
9.4 GNUGgettext e e 94
9.5 Caveat 95

10 Thread programming 96
10.1 Introduction. e 96
10.2 Programmingthreads. 96
10.3 Critical SECtions e 98
10.4 The Thread Manager i i i i e e e e e e e 100

11 Optimizations 102
11.1 Nonprocessorspecific 102
11.1.1 Constantfolding. 102

11.1.2 Constantmerging. o o i 102

11.1.3 Shortcutevaluation. 102

11.1.4 Constantsetinlining 102

11.15 Smallsets 103

11.1.6 Rangechecking. 103

11.1.7 Andinsteadofmodulo o 103

11.1.8 Shiftsinstead of multiplyordivide. 103

11.1.9 Automaticalignment e 103

11.1.10 Smartlinking. 103

11122 Inlineroutines. 103

11.1.12 Stack frame omission. 103

11.1.13 Registervariables. 104

11.2 Processorspecific. e 104
11.2.1 Intel80x86 specific. 104

11.2.2 Motorola 680x0 specific 106

11.3 Optimization switches. e 106
11.4 Tipstogetfastercode. 107
115 Tipstogetsmallercode. 107
12 Programming shared libraries 108
12.1 Introduction. e 108

CONTENTS

12.2 Creatingalibrary. 108
12.3 Using alibrary ina pascal program 109
12.4 Using a pascal library fromaCoprogram 111
12.5 Some WIindowS iSSUBS. v o i i i e 112

13 Using Windows resources 113
13.1 TheresourcedirectidBR 113
13.2 Cre@ting reSOUICES o v v v ot e e e e e e e 113
13.3 Usingstringtables. 114
13.4 Inserting versioninformation L oL 114
13.5 Inserting an applicationicon L oL 115
13.6 Using apascal preprocessQr. v v i v i i i 115

A Anatomy of a unit file 117
Al BaSICS. e e 117
A2 readingppufiles. 117
A3 TheHeader. 118
A4 ThesSections 119
A5 Creatingppufiles. 120

B Compiler and RTL source tree structure 123
B.1 Thecompilersourcetree 123
B.2 TheRTLsourcetree. i i i e e e e e 123

C Compiler limits 125
D Compiler modes 126
D.1 FPCmode 126
D.2 TPmMode e e 126
D.3 Delphimode e 127
D4 GPCmode 127
D.5 OBJFPCmMoOde. 127
D.6 MACMOAE e e e 128

E Usingfpcmake 130
E.1 Introduction. e 130
E.2 Functionality e 130
E.3 Usage. e 131
E.4 Format of the configurationfile., 132
E.4.1 clean e 132

E.4.2 compiler 132

E43 Default. 133

CONTENTS

E.44 Dist. e 133
E.45 Install. e 134
E.4.6 Package e 134
E.4.7 Prerules e 134
E.4.8 Requires. 134
E.4.9 Rules. e 135
E.4.10 Target. e e 135

E.5 Programs needed to use the generated makefile. 136
E.6 \Variables that affect the generated makefile 136
E.6.1 Directoryvariables 137
E.6.2 Compilercommand-linevariables. 137

E.7 Variablessetbfpcmake o 137
E.7.1 Directoryvariables 138
E.7.2 Targetvariables. 139
E.7.3 Compiler command-linevariables. 140
E.7.4 Programnames. e e 140
E.7.5 Fileextensions. 141
E.7.6 Targetfiles. e 141

E.8 Rules and targets createdfpgmake 141
E.8.1 Patternrules. 141
E.8.2 Buildrules 142
E.8.3 Cleaningrules. e 142
E.8.4 archivingrules. 142
E.8.5 |Installationrules. 142
E.8.6 Informativerules. 143

F Compiling the compiler 144
F.1 Introduction. e 144
F.2 Beforestarting 144
F.3 Compilingusingnake e 145
F.4 Compilingbyhand. 146
F.4.1 Compilingthe RTL 146
F.4.2 Compilingthecompiler. 147

G Compiler defines during compilation 149
H Stack configuration 151
H.1 DOS. . . . e 151
H.2 LiNUX . . . e e e e e e e 151
H.3 Netbsd. 151
H.4 Freebsd. e 151

CONTENTS

H5 BeOS 151
H.6 WIndows e e 151
H.7 OS/2. . . 152
H8 Amiga. 152
HO Atari. e 152
| Operating system specific behavior 153

List of Tables

1.1

21

6.1
6.2
6.3
6.4
6.5
6.6

8.1
8.2
8.3
8.4
8.5
8.6
8.7
8.8
8.9

12.1

Al
A2
A3
A4
A5

F.1

G.1
G.2

Formats generated by the x86 compiler. 25
Predefined macros. e 39
Intel 80x86 Registertable. 59
Motorola 680x0 Registertable 59
Calling mechanismsinFreePascal 64
Stack frame when calling a nested procedure (32-bit processors). 64
Stack frame when calling a procedure (32-bitmodel) 66
Maximum limits for processors. 67
Enumeration storage ft(w mode Lo 79
Processor mapping of realtype. 79
AnsiString memory structure (32-bitmodel). 81
Object memory layout (32-bitmodel) 82
Object Virtual Method Table memory layout (32-bitmodel) 82
Class memory layout (32-bitmodel). L. 83
Class Virtual Method Table memory layout (32-bit model). 83
Dataalignment. e 85
ReturnNillfGrowHeapFailsvalue. 86
Shared library support. 108
PPUHeader 118
PPUCPU Fieldvalues. 118
PPUHeader Flagvalues 119
chunkdataformat 119
Possible PPU ENntry types. o 0 e e 120
Possible defines when compiling FPC. oL 148
Possible defines when compilingusingFPC 149
Possible CPU defines when compilingusing FPC 150

10

LIST OF TABLES

G.3 Possible defines when compiling usingtargetOS 150

I.1 Operating system specificbehavior 153

11

LIST OF TABLES

0.1 About this document

This is the programmer’s manual for Free Pascal.

It describes some of the peculiarities of the Free Pascal compiler, and provides a glimpse of how
the compiler generates its code, and how you can change the generated code. It will not, however,
provide a detailed account of the inner workings of the compiler, nor will it describe how to use the
compiler (described in thesers guidg It also will not describe the inner workings of the Run-Time
Library (RTL). The best way to learn about the way the RTL is implemented is from the sources
themselves.

The things described here are useful when things need to be done that require greater flexibility than
the standard Pascal language constructs (described Retleeence guide

Since the compiler is continuously under development, this document may get out of date. Wherever
possible, the information in this manual will be updated. If you find something which isn’t correct,
or you think something is missing, feel free to contact me

1at Michael.VanCanneyt@wisa.be

12

file:../user/user.html
file:../ref/ref.html

Chapter 1

Compiler directives

Free Pascal supports compiler directives in the source file. They are not the same as Turbo Pascal
directives, although some are supported for compatibility. There is a distinction between local and
global directives; local directives take effect from the moment they are encountered, global directives
have an effect on all of the compiled code.

Many switches have a long form also. If they do, then the name of the long form is given also. For
long switches, the + or - character to switch the option on or off, may be replac@Nby OFF
keywords.

Thus{$l+} is equivalent td$IOCHECKS ON}or {$IOCHECKS +} and{$C-} is equivalent
to {SASSERTIONS OFF}or {$ASSERTIONS -}

The long forms of the switches are the same as their Delphi counterparts.

1.1 Local directives

Local directives can occur more than once in a unit or program, If they have a command-line counter-
part, the command-line argument is restored as the default for each compiled file. The local directives
influence the compiler’'s behaviour from the moment they're encountered until the moment another
switch annihilates their behaviour, or the end of the current unit or program is reached.

1.1.1 $Aor $ALIGN : Align Data

The{$ALIGN directive can be used to select the data alignment strategy of the compiler for the Mac
OS. Only valid in MACPAS mode, it can have the following values:

MACG68K
POWER
RESET

1.1.2 $ASMMODEAssembler mode (Intel 80x86 only)

The {$ASMMODE XXX8irective informs the compiler what kind of assembler it can expect in an
asm block. TheXXXshould be replaced by one of the following:

att Indicates thahsm blocks contain AT&T syntax assembler.

13

CHAPTER 1. COMPILER DIRECTIVES

intel Indicates thaasm blocks contain Intel syntax assembler.

direct Tells the compiler that asm blocks should be copied directly to the assembiler file.

These switches are local, and retain their value to the end of the unit that is compiled, unless they are
replaced by another directive of the same type. The command-line switch that corresponds to this
switch is-R.

The default assembler reader is the AT&T reader.

1.1.3 $B or $BOOLEVAL Complete boolean evaluation

This switch is understood by the Free Pascal compiler, but is ignored. The compiler always uses
shortcut evaluation, i.e. the evaluation of a boolean expression is stopped once the result of the total
exression is known with certainty.

So, in the following example, the functidofu , which has a boolean result, will never get called.

If False and Bofu then

This has as a consequence that any additional actions that are dBo&ubyare not executed.

1.1.4 $Cor SASSERTIONS: Assertion support

The {$ASSERTIONS} switch determines if assert statements are compiled into the binary or not.
If the switch is on, the statement

Assert(BooleanExpression,AssertMessage);

Will be compiled in the binary. If tdBooleanExpression evaluates td-alse , the RTL will
check if the AssertErrorProc is set. If it is set, it will be called with as parameters the
AssertMessage message, the name of the file, the LineNumber and the address. If it is not
set, a runtime error 227 is generated.

TheAssertErrorProc is defined as

Type

TAssertErrorProc=procedure(const msg,fname:string;lineno,erroraddr:longint);
Var

AssertErrorProc = TAssertErrorProc;

This can be used mainly for debugging purposes. Jystem unit sets theAssertErrorProc
to a handler that displays a messagestaerr and simply exits. Thesysutils unit catches the
run-time error 227 and raises B\ssertionFailed exception.

1.1.5 $CHECKPOINTER Check pointer values

The {$CHECKPOINTER} directive turns heap pointer checking on (valDy or off (value OFF).

When heap pointer checking is on and the code is compiled witlgthgheaptrace) option on, then

a check is inserted when dereferencing a pointer. The check will verify that the pointer contains a
valid value, i.e. points to a location that is reachable by the program: the stack or a location in the
heap. If not, a run-time error 216 or 204 is raised.

If the code is compiled withougl switch, then this directive has no effect. Note that this consider-
ably slows down the code.

14

CHAPTER 1. COMPILER DIRECTIVES

1.1.6 $DEFINE : Define a symbol
The directive

{$DEFINE name}

defines the symbaiame. This symbol remains defined until the end of the current module (i.e. unit
or program), or until 8UNDEF namaelirective is encountered.

If nameis already defined, this has no effeltameis case insensitive.

The symbols that are defined in a unit, are not saved in the unit file, so they are also not exported
from a unit.

1.1.7 $ELSE: Switch conditional compilation
The{$ELSE} switches between compiling and ignoring the source text delimited by the preceding

{$IFxxx} and following{$ENDIF} . Any text after theELSE keyword but before the brace is
ignored:

{$ELSE some ignored text}

is the same as

{$ELSE}

This is useful for indication what switch is meant.

1.1.8 $ELSEC: Switch conditional compilation

In MACPAS mode, this directive can be used as an alternative tbEh&E directive. It is supported
for compatibility with existing Mac OS pascal compilers.

1.1.9 $ENDC: End conditional compilation

In MACPAS mode, this directive can be used as an alternative t@ENDIF directive. It is sup-
ported for compatibility with existing Mac OS pascal compilers.

1.1.10 $ENDIF : End conditional compilation

The{$SENDIF} directive ends the conditional compilation initiated by the {&fxxx} directive.
Any text after theENDIF keyword but before the closing brace is ignored:

{$ENDIF some ignored text}
is the same as
{$ENDIF}

This is useful for indication what switch is meant to be ended.

15

CHAPTER 1. COMPILER DIRECTIVES

1.1.11 $ERROR Generate error message

The following code
{$ERROR This code is erroneous !}

will display an error message when the compiler encounters it, and increase the error count of the
compiler. The compiler will continue to compile, but no code will be emitted.

1.1.12 $F : Far or near functions

This directive is recognized for compatibility with Turbo Pascal. Under the 32-bit and 64-bit pro-
gramming models, the concept of near and far calls have no meaning, hence the directive is ignored.
A warning is printed to the screen, as a reminder.

As an example, the following piece of code:
{$F+}
Procedure TestProc;

begin
Writeln ('Hello From TestProc’);
end;

begin
testProc
end.

Generates the following compiler output:

malpertuus:; >pp -vw testf

Compiler: ppc386

Units are searched in: /home/michael;/usr/bin/;/ust/lib/ppc/0.9.1/linuxunits
Target OS: Linux

Compiling testf.pp

testf.pp(1) Warning: illegal compiler switch
7739 kB free

Calling assembiler...

Assembled...

Calling linker...

12 lines compiled,
1.00000000000000E+0000

One can see that the verbosity level was set to display warnings.

When declaring a function &ar (this has the same effect as setting it betwig@en} ...{$F-}
directives), the compiler also generates a warning:

testf.pp(3) Warning: FAR ignored
The same story is true for procedures declaredeear . The warning displayed in that case is:

testf.pp(3) Warning: NEAR ignored

16

CHAPTER 1. COMPILER DIRECTIVES

1.1.13 $FATAL : Generate fatal error message

The following code
{$FATAL This code is erroneous !}

will display an error message when the compiler encounters it, and the compiler will immediatly stop
the compilation process.

This is mainly useful inc conjunction wigIFDEF} or {$IFOPT} statements.

1.1.14 3$FPUTYPE: Select coprocessor type

This directive selects the type of coprocessor used to do floating point calculations. The directive
must be followed by the type of floating point unit. The allowed values depend on the target CPU:
all SOFT. FPC emulates the coprocessor (not yet implemented).

i386 X87, SSE, SSE2 code compiled wittfSSEuses the sse to do calculations involving a float of
type Single . This code runs only on Pentium Ill and above, or AthlonXP and above. Code
compiled withSSE2 uses thesse unit to do calculations with the single and double data type.
This code runs only on PentiumlV and above or Athlon64 and above

x86-64 SSE64
powerpc STANDARD
arm LIBGCC, FPA FPA10, FPA11,VFP.

This directive corresponds to th€f command-line option.

1.1.15 $GOTQ Support Goto and Label

If {$GOTO ON}is specified, the compiler will suppoBoto statements antdabel declarations.
By default, 5GOTO OFFks assumed. This directive corresponds to-thg command-line option.

As an example, the following code can be compiled:
{$GOTO ON}
label Theend;

begin
If ParamCount=0 then
GoTo TheEnd;
Writeln ("You specified command-line options’);
TheEnd:
end.

Remark: When compiling assembler code using the inline assembler readers, any labels used in the assembler
code must be declared, and §$0TO ON}directive should be used.

17

CHAPTER 1. COMPILER DIRECTIVES

1.1.16 $Hor $SLONGSTRINGS Use AnsiStrings

If {SLONGSTRINGS ONIJis specified, the keywor8tring (no length specifier) will be treated
asAnsiString , and the compiler will treat the corresponding variable as an ansistring, and will
generate corresponding code.

By default, the use of ansistrings is off, corresponding®id-} . The system unit is compiled
without ansistrings, all its functions accept shortstring arguments. The same is true for all RTL units,
except thesysutils unit, which is compiled with ansistrings.

1.1.17 $HINT : Generate hint message

If the generation of hints is turned on, through the command-line option or thgHINTS ON}
directive, then

{$Hint This code should be optimized }

will display a hint message when the compiler encounters it.
By default, no hints are generated.

1.1.18 S$HINTS : Emit hints

{$HINTS ON} switches the generation of hints offHINTS OFF} switches the generation of
hints off. Contrary to the command-line optierh this is a local switch, this is useful for checking
parts of the code.

1.1.19 $IF : Start conditional compilation

The directive{$IF expr} will continue the compilation if the boolean expressexpr evaluates
to true . If the compilation evaluates to false, then the source is skipped to thé$litckSE} or
{$ENDIF} directive.

The compiler must be able to evaluate the expression at parse time. This means that variables or
constants that are defined in the source cannot be used. Macros and symbols may be used, however.

More information on this can be found in the section about conditionals.

1.1.20 $IFC : Start conditional compilation

In MACPAS mode, this directive can be used as an alternative télthedirective. It is supported
for compatibility with existing Mac OS pascal compilers.

1.1.21 $IFDEF Name: Start conditional compilation

If the symbolNameis not defined then thgSIFDEF name} will skip the compilation of the text
that follows it to the firs{$ELSE} or {$ENDIF} directive. IfNameis defined, then compilation
continues as if the directive wasn't there.

1.1.22 $IFNDEF : Start conditional compilation

If the symbolNameis defined then th¢SIFNDEF name} will skip the compilation of the text
that follows it to the firs{$ELSE} or {SENDIF} directive. If it is not defined, then compilation
continues as if the directive wasn't there.

18

Remark:

CHAPTER 1. COMPILER DIRECTIVES

1.1.23 S$IFOPT : Start conditional compilation

The{$IFOPT switch} will compile the text that follows it if the switckwitch is currently in
the specified state. If itisn't in the specified state, then compilation continues after the corresponding
{$ELSE} or{$ENDIF} directive.

As an example:

{$IFOPT M+}
Writeln (Compiled with type information’);
{$ENDIF}

Will compile the writeln statement if generation of type information is on.

The{$IFOPT} directive accepts only short options, i£IFOPT TYPEINFO} will not be ac-
cepted.

1.1.24 S$IMPLICITEXCEPTIONS : Do not generate finalization code

The compiler generates an implitiy ..finally frame around each procedure that needs initial-
ization or finalization of variables, and finalizes the variables infitaly block. This slows

down these procedures (with 5-10frames can be disabled. One should be careful with this directive,
because it can lead to memory leaks if an exception occurs inside the routine. Therefore, standard it
is set toOFF.

1.1.25 $INFO : Generate info message

If the generation of info is turned on, through ¢ command-line option, then
{$INFO This was coded on a rainy day by Bugs Bunny}

will display an info message when the compiler encounters it.

This is useful in conjunction with thgSIFDEF} directive, to show information about which part of
the code is being compiled.

1.1.26 S$INLINE : Allow inline code.

The {$INLINE ON} directive tells the compiler that thaline procedure modifier should be
allowed. Procedures that are declared inline are copied to the places where they are called. This has
the effect that there is no actual procedure call, the code of the procedure is just copied to where the
procedure is needed, this results in faster execution speed if the function or procedure is used a lot.

By default, Inline procedures are not allowed. This directive must be specified to use inlined
code. The directive is equivalent to the command-line swiBih. For more information on inline
routines, consult thReference guide

1.1.27 S$INTERFACES: Specify Interface type.

The{$INTERFACES} directive tells the compiler what it should take as the parent interface of an
interface declaration which does not explicitly specify a parent interface. By default the Windows
COM IUnknown interface is used. Other implementations of interfaces (CORBA or Java) do not
necessarily have this interface, and for such cases, this directive can be used. It accepts the following
three values:

19

file:../ref/ref.html

CHAPTER 1. COMPILER DIRECTIVES

COM Interfaces will descend fromunknown .
CORBA Interfaces will not have a parent.

DEFAULT Currently, this is COM.

1.1.28 $I or $SIOCHECKS: Input/Output checking

The{$l-} or{$IOCHECKS OFF}directive tells the compiler not to generate input/output check-
ing code in the program. By default, the compiler generates 1/0O checking code. This behaviour can
be controlled globally with theCi switch.

When compiling using theCi compiler switch, the Free Pascal compiler inserts input/output check-
ing code after every input/output call in the code. If an error occurred during input or output, then a
run-time error will be generated. This switch can also be used to avoid this behaviour.

If no /0O checking code is generated, to check if something went wrond(QResult function
can be used to see if everything went without problems.

Conversely{$l+} will turn error-checking back on, until another directive is encountered which
turns it off again.

The most common use for this switch is to check if the opening of a file went without problems, as
in the following piece of code:

assign (f,’file.txt’);
{$-}
rewrite (f);
{$1+}
if IOResult<>0 then
begin
Writeln (Error opening file: “file.txt");
exit
end;

See thdOResult function explanation ifReference guidfor a detailed description of the possible
errors that can occur when using input/output checking.

1.1.29 $I or $INCLUDE: Include file

The {$I filename} or {$INCLUDE filename} directive tells the compiler to read further
statements from the filelename . The statements read there will be inserted as if they occurred
in the current file.

The compiler will append thepp extension to the file if no extension is given. Do not put the
filename between quotes, as they will be regarded as part of the file’s name.

Include files can be nested, but not infinitely deep. The number of files is restricted to the number of
file descriptors available to the Free Pascal compiler.

Contrary to Turbo Pascal, include files can cross blocks. l.e. a block can start in one file (with a
Begin keyword) and can end in another (wittEad keyword). The smallest entity in an include
file must be a token, i.e. an identifier, keyword or operator.

The compiler will look for the file to include in the following places:

1. It will look in the path specified in the include file name.

2. It will look in the directory where the current source file is.

20

file:../ref/ref.html

CHAPTER 1. COMPILER DIRECTIVES

3. it will look in all directories specified in the include file search path.

Directories can be added to the include file search path witH theommand-line option.

1.1.30 $I or SINCLUDE: Include compiler info

In this form:
{$INCLUDE %xxx%}
wherexxx is one of the following:

DATE Inserts the current date.

FPCTARGET Inserts the target CPU name. (deprecated FIBEETARGETCPU
FPCTARGETCPU Inserts the target CPU name.

FPCTARGETOS Inserts the target OS name.

FPCVERSION Current compiler version number.

FILE Filename in which the directive is found.

LINE Linenumer on which the directive is found.

TIME Current time.

If xxx is none of the above, then it is assumed to be the name of an environment variable. Its value
will be fetched. As a reult, this will generate a macro with the value of these things, as if it were a
string.

For example, the following program

Program InfoDemo;
Const User = {$| %USER%};

begin
Write ('This program was compiled at '{$| %TIME%});
Writeln (" on ' {$I %DATE%Y});
Writeln ('By ’,User);
Writeln ('Compiler version: ' {$| %FPCVERSION%});
Writeln (‘Target CPU: ' {$l %FPCTARGET%});

end.

Creates the following output:

This program was compiled at 17:40:18 on 1998/09/09
By michael

Compiler version: 0.99.7

Target CPU: i386

1.1.31 $I386_XXX : Specify assembler format (Intel 80x86 only)

This switch selects the assembler readf$l386_XXX} has the same effect 4$ASMMODE
XXX}, sectionl.1.2 pagel3

This switch is deprecated, ti@ASMMODE XXX8lirective should be used instead.

21

Remark:

CHAPTER 1. COMPILER DIRECTIVES

1.1.32 $L or $LINK : Link object file

The{$L filename} or{$LINK filename} directive tells the compiler that the fifdename
should be linked to the program. This cannot be used for libraries, see section dettB$hpage
22for that.

The compiler will look for this file in the following way:

1. It will look in the path specified in the object file name.
2. It will look in the directory where the current source file is.

3. it will look in all directories specified in the object file search path.

Directories can be added to the object file search path witkRteoption.

OnLINUX systems and on operating systems with case-sensitive filesystems (sual &ystems),
the name is case sensitive, and must be typed exactly as it appears on your system.

Take care that the object file you're linking is in a format the linker understands. Which format this
is, depends on the platform you're on. Typildg orld -help on the command line gives a list of
formatsld knows about.

Other files and options can be passed to the linker usingktheommand-line option. More than
one of these options can be used, and they will be passed to the linker, in the order that they were
specified on the command line, just before the names of the object files that must be linked.

1.1.33 S$LINKLIB : Link to a library

The{$LINKLIB name} willlink to a library name. This has the effect of passinlpgame to the
linker.

As an example, consider the following unit:
unit getlen;

interface
{$LINKLIB c}

function strlen (P : pchar) : longint;cdecl;
implementation

function strlen (P : pchar) : longint;cdecl;external;
end.

If one would issue the command

ppc386 foo.pp

where foo.pp has the above unit initses clause, then the compiler would link the program to the
c library, by passing the linker thdc option.

The same effect could be obtained by removing the linklib directive in the above unit, and specify
-k-lc on the command-line:

ppc386 -k-lc foo.pp

22

Remark:

Remark:

CHAPTER 1. COMPILER DIRECTIVES

1.1.34 $Mor $STYPEINFO: Generate type info

For classes that are compiled in §$1+} or {$TYPEINFO ON} state, the compiler will generate
Run-Time Type Information (RTTI). All descendent objects of an object that was compiled in the
{$M+} state will get RTTI information too, as well as any published classes. By default, no Run-
Time Type Information is generated. Th&ersistent object that is present in the FCL (Free
Component Library) is generated in tftiM+} state. The generation of RTTI allows programmers

to stream objects, and to access published properties of objects, without knowing the actual class of
the object.

The run-time type information is accessible through Tly@Iinfo unit, which is part of the Free
Pascal Run-Time Library.

The streaming system implemented by Free Pascal requires that all streamable components be de-
scendent fronTPersistent

1.1.35 $MACRO Allow use of macros.

In the SMACRO ONJstate, the compiler allows to use C-style (although not as elaborate) macros.
Macros provide a means for simple text substitution. More information on using macros can be found
in the sectior?.2, page38 section. This directive is equivalent to the command-line swigrh.

By default, macros are not allowed.

1.1.36 $MAXFPUREGISTERS Maximum number of FPU registers for
variables

The{$MAXFPUREGISTERS XXXHlirective tells the compiler how much floating point variables
can be kept in the floating point processor registers on an Intel X86 processor. This switch is ignored
unless theOr (use register variables) optimization is used.

This is quite tricky because the Intel FPU stack is limited to 8 entries. The compiler uses a heuristic

algorithm to determine how much variables should be put onto the stack: in leaf procedures it is

limited to 3 and in non leaf procedures to 1. But in case of a deep call tree or, even worse, a recursive
procedure this can still lead to a FPU stack overflow, so the user can tell the compiler how much

(floating point) variables should be kept in registers.

The directive accepts the following arguments:

N whereN is the maximum number of FPU registers to use. Currently this can be in the range 0 to
7.

Normal restores the heuristic and standard behavior.

Default restores the heuristic and standard behaviour.

This directive is valid until the end of the current procedure.

1.1.37 3$MESSAGE Generate info message

If the generation of info is turned on, through the command-line option, then
{$MESSAGE This was coded on a rainy day by Bugs Bunny }

will display an info message when the compiler encounters it. The effect is the sam¢&iblfF@}
directive.

23

Remark:

CHAPTER 1. COMPILER DIRECTIVES

1.1.38 3$MMX Intel MMX support (Intel 80x86 only)
Free Pascal supports optimization for & X Intel processor (see also chapbgr

This optimizes certain code parts for theX Intel processor, thus greatly improving speed. The
speed is noticed mostly when moving large amounts of data. Things that change are

¢ Data with a size that is a multiple of 8 bytes is moved usingnleq assembler instruction,
which moves 8 bytes at a time

MMX support is NOT emulated on hon-MMX systems, i.e. if the processor doesn't have the MMX
extensions, the MMX optimizations cannot be used.

WhenMMX support is on, it is not allowed to do floating point arithmetic. It is allowed to move
floating point data, but no arithmetic can be done. If floating point math must be done anyway, first
MMX support must be switched off and the FPU must be cleared usingnthesfunction of the

Cpu unit.

The following example will make this more clear:

Program MMXDemo;
uses mmx;

var
dl : double;
a : array[0..10000] of double;
i : longint;

begin
d1:=1.0;
{$Smmx+}
{ floating point data is used, but we do _no_ arithmetic }
for i:=0 to 10000 do
a[i]:=d2; { this is done with 64 bit moves }
{$mmx-}
emms; { clear fpu }
{ now we can do floating point arithmetic }

end.

See, however, the chapter on MMXE) for more information on this topic.

1.1.39 3$NOTE: Generate note message

If the generation of notes is turned on, throught/e command-line option or thiESNOTES ON}
directive, then

{$NOTE Ask Santa Claus to look at this code}

will display a note message when the compiler encounters it.

1.1.40 $NOTES: Emit notes

{$NOTES ONs}switches the generation of notes BNOTES OFF} switches the generation of
notes off. Contrary to the command-line optiem this is a local switch, this is useful for checking
parts of the code.

24

CHAPTER 1. COMPILER DIRECTIVES

By default,{$NOTES} is off.

1.1.41 3$OUTPUT_FORMATSpecify the output format

{$OUTPUT_FORMAT format} has the same functionality as thee command-line option: it tells

the compiler what kind of object file must be generated. You can specify this switclbefdyethe
Program or Unit clause in your source file. The different kinds of formats are shown in table
(1.9.

The default output format depends on the platform the compiler was compiled on.

Table 1.1: Formats generated by the x86 compiler

Switch value Generated format

AS AT&T assembler file.
AS_AOUT Go32v1 assembler file.
ASW AT&T Win32 assembler file.
COFF Go32v2 COFF object file.
MASM Masm assembiler file.
NASM Nasm assembler file.

NASMCOFF Nasm assembler file (COFF format).
NASMELF Nasm assembler file (ELF format).
PECOFF PECOFF object file (Win32).

TASM Tasm assembler file.

1.1.42 $P or SOPENSTRINGS Use open strings

If this switch is on, all function or procedure parameters of type string are considered to be open
string parameters; this parameter only has effect for short strings, not for ansistrings.

When using openstrings, the declared type of the string can be different from the type of string that is
actually passed, even for strings that are passed by reference. The declared size of the string passed
can be examined with thdigh(P) call.

Default the use of openstrings is off.

1.1.43 $PACKENUMMinimum enumeration type size

This directive tells the compiler the minimum number of bytes it should use when storing enumerated
types. It is of the following form:

{$PACKENUM xxx}
{SMINENUMSIZE xxx}

Where the form witlSMINENUMSIZEis for Delphi compatibility.xxx can be one o1,2 or4, or
NORMAIr DEFAULT

As an alternative form one can u§ezZ1} , {$Z2} {$24} . Contrary to Delphi, the default is
{$z4}).

So the following code

{$PACKENUM 1}

25

Remark:

CHAPTER 1. COMPILER DIRECTIVES

Type
Days = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

will use 1 byte to store a variable of tyfizays, whereas it nomally would use 4 bytes. The above
code is equivalent to

{$z21}
Type
Days = (monday, tuesday, wednesday, thursday, friday,
saturday, sunday);

1.1.44 $PACKRECORDSAlignment of record elements
This directive controls the byte alignment of the elements in a record, object or class type definition.
It is of the following form:

{$PACKRECORDS n}

Wheren is one of 1, 2, 4, 16C, NORMAIlor DEFAULT This means that the elements of a record
that have size greater thanwill be aligned onn byte boundaries. Elements with size less than or
equal ton will be aligned to a natural boundary, i.e. to a power of two that is equal to or larger than
the element’s size. The tyg&is used to specify alignment as by the GNU CC compiler. It should be
used only when making import units for C routines.

The default alignment (which can be selected ilMBFAULT is 2, contrary to Turbo Pascal, where

itis 1.

More information on this and an example program can be found in the reference guide, in the section
about record types.

1.1.45 $Q $OVERFLOWCHECHK®/erflow checking

The {$Q+} or {$OVERFLOWCHECKS OM}rective turns on integer overflow checking. This
means that the compiler inserts code to check for overflow when doing computations with integers.
When an overflow occurs, the run-time library will print a mess@gerflow at xxx , and exit

the program with exit code 215.

Overflow checking behaviour is not the same as in Turbo Pascal since all arithmetic operations are
done via 32-bit or 64-bit values. Furthermore, the() andDec standard system procedura®
checked for overflow in Free Pascal, while in Turbo Pascal they are not.

Using the{$Q-} switch switches off the overflow checking code generation.

The generation of overflow checking code can also be controlled usin@theommand line com-
piler option (seéJsers guidg

1.1.46 $R or SRANGECHECKSRange checking

By default, the compiler doesn’t generate code to check the ranges of array indices, enumeration
types, subrange types, etc. Specifying {iR+} switch tells the computer to generate code to
check these indices. If, at run-time, an index or enumeration type is specified that is out of the
declared range of the compiler, then a run-time error is generated, and the program exits with exit
code 201. This can happen when doing a typecast (implicit or explicit) on an enumeration type or
subrange type.

26

file:../user/user.html

Remark:

CHAPTER 1. COMPILER DIRECTIVES

The {$RANGECHECKS OFRwitch tells the compiler not to generate range checking code. This
may result in faulty program behaviour, but no run-time errors will be generated.

The standard functiongal andRead will also check ranges when the call is compiled$R+}
mode.

1.1.47 $SATURATION: Saturation operations (Intel 80x86 only)

This works only on the intel compiler, and MMX support must be 8MMX +}) for this to have
any effect. See the section on saturation support (sebtypage56) for more information on the
effect of this directive.

1.1.48 $SETC: Define and assign a value to a symbol

In MAC mode, this directive can be used to define compiler symbols. It is an alternative to the
$DEFINE directive for macros. It is supported for compatibility with existing Mac OS pascal com-
pilers. It will define a symbol with a certain value (called a compiler variable expression).

The expression syntax is similar to expressions used in macros, but the expression must be evaluated
at compile-time by the compiler. This means that only some basic arithmetic and logical operators
can be used, and some extra possibilities such aSRUEFALSEandUNDEFINEDoperators:

{$SETC TARGET_CPU_PPC
{$SETC TARGET_CPU_68K
{$SETC TARGET_CPU_X86
{$SETC TARGET_CPU_MIPS
{$SETC TARGET_OS_UNIX

NOT UNDEFINED CPUPOWERPC}

NOT UNDEFINED CPUMG68K}

NOT UNDEFINED CPUI386}

FALSE}

(NOT UNDEFINED UNIX) AND (UNDEFINED DARWIN)}

The:= assignment symbol may be replaced with th&ymbol.

Note that this command works only in MACPAS mode, but independent ofShrecommand-line
option or{$MACROS }directive.

1.1.49 $STATIC : Allow use of Static keyword.

If you specify thel$STATIC ON} directive, therBtatic methods are allowed for objectStatic
objects methods do not requir&Salf variable. They are equivalent @ass methods for classes.
By default,Static methods are not allowed. Class methods are always allowed.

By default, the address operator returns an untyped pointer.
This directive is equivalent to th&t command-line option.

1.1.50 $STOP: Generate fatal error message

The following code
{$STOP This code is erroneous !}

will display an error message when the compiler encounters it. The compiler will immediatly stop
the compilation process.

It has the same effect as tflFATAL} directive.

27

Remark:

CHAPTER 1. COMPILER DIRECTIVES

1.1.51 3T or $STYPEDADDRESSTyped address operator (@)

Inthe{$T+} or{$TYPEDADDRESS ON§tate the @ operator, when applied to a variable, returns
aresult of typéT , if the type of the variable i$. In the{$T-} state, the result is always an untyped
pointer, which is assignment compatible with all other pointer types.

1.1.52 $UNDEF: Undefine a symbol
The directive

{SUNDEF name}

un-defines the symbaolame if it was previously definedNameis case insensitive.

1.1.53 $V or $VARSTRINGCHECKSVar-string checking

When in the+ or ONstate, the compiler checks that strings passed as parameters are of the same,
identical, string type as the declared parameters of the procedure.

1.1.54 $WAIT : Wait for enter key press

If the compiler encounters a
{$WAIT}

directive, it will resume compiling only after the user has pressed the enter key. If the generation of
info messages is turned on, then the compiler will display the following message:

Press <return> to continue

before waiting for a keypress.

This may interfere with automatic compilation processes. It should be used for debugging purposes
only.

1.1.55 $WARNING Generate warning message

If the generation of warnings is turned on, through-the command-line option or thWARNINGS
ON} directive, then

{$WARNING This is dubious code}

will display a warning message when the compiler encounters it.

1.1.56 $WARNINGS Emit warnings

{$WARNINGS ONjswitches the generation of warnings offWARNINGS OFF}switches the
generation of warnings off. Contrary to the command-line optionm this is a local switch, this is
useful for checking parts of your code.

By default, no warnings are emitted.

28

CHAPTER 1. COMPILER DIRECTIVES

1.1.57 $X or SEXTENDEDSYNTAXExtended syntax

Extended syntax allows you to drop the result of a function. This means that you can use a function
call as if it were a procedure. Standard this feature is on. You can switch it off usif§iXke or
{$EXTENDEDSYNTAX OFFHirective.

The following, for instance, will not compile:

function Func (var Arg : sometype) : longint;
begin

{ declaration of Func }

end;

{$X-}
Func (A);

The reason this construct is supported is that you may wish to call a function for certain side-effects
it has, but you don’t need the function result. In this case you don’t need to assign the function result,
saving you an extra variable.

The command-line compiler switelsal has the same effect as tf#X+} directive.
By default, extended syntax is assumed.

1.2 Global directives

Global directives affect the whole of the compilation process. That is why they also have a command-
line counterpart. The command-line counterpart is given for each of the directives. They must be
specifiecbeforetheunit or program clause in a source file, or they will have no effect.

1.2.1 $APPID : Specify application ID.

Used on the PALM os only, it can be set to specify the application name, which can be viewed on the
Palm only. This directive only makes sense in a program source file, not in a unit.

{$APPID MyApplication}

1.2.2 $APPID : Specify application name.

Used on the PALM os only, it can be set to specify the application name which can be viewed on the
Palm only. This directive only makes sense in a program source file, not in a unit.

{$APPNAME My Application, compiled using Free Pascal.}

1.2.3 3$APPTYPE: Specify type of application.

This directive is currently only supported on the following targets: Win32, Mac, OS2 and AmigaOS.
On other targets, the directive is ignored.

The{$APPTYPE XXX}accepts one argument which specifies what kind of application is compiled.
It can have the following values:

29

CHAPTER 1. COMPILER DIRECTIVES

CONSOLE A console application. A terminal will be created and standard input, output and stan-
dard error file descriptors will be initialized. In Windows, a terminal window will be created.
This is the default.

Note that on Mac OS such applications cannot take command-line options, nor return a result
code. They will run in a special terminal window, implemented as a SIOW application, see the
MPW documentation for details.

Ono09g/2, these applications can run both full-screen and in a terminal window.
LINUX applications are always console applications. The application itself can decide to close
the standard files, though.

FS specifies a full-screen VIO application as/2. These applications use a special BIOS-like API
to program the screeims/2 starts these application allways in full screen.

GUI Specifying the{$APPTYPE GUI} directive will mark the application as a graphical appli-
cation; no console window will be opened when the application is run. No stanrdard file
descriptors will be initialized, using them (with ewgriteln statements) will produce a run-
time error. If run from the command-line, the command prompt will be returned immediatly
after the application was started.

Ono0s/2 and Mac OS, the GUI application type creates a GUI application, as on Windows. On
09/2, this is a real Presentation Manager application.

TOOL this is a special directive for the Mac OS. It tells the compiler to create a tool application:
It initializes input, output, stderr files, it can take parameters and return a result code. It is
implemented as an MPW tool which can only be run by MPW or ToolServer.

Care should be taken when compili@dJl applications; thénput andOutput files are not avail-
able in a GUI application, and attempting to read from or write to them will result in a run-time
error.

Itis possible to determine the application type of alWows or AMIGA application at runtime. The
IsConsole constant, declared in the Win32 and Amiga system units as

Const
IsConsole : Boolean;

containsTrue if the application is a console applicatidrglse if the application is a GUI applica-
tion.

1.2.4 3$CALLING : Default calling convention

This directive allows to specify the default calling convention used by the compiler, when no calling
convention is specified for a procedure or function declaration. It can be one of the following values:

CDECL C compiler calling convention.
CPPDECL C++ compiler calling convention.
FAR16 Ignored, but parsed for compatibility reasons.

FPCCALL Older FPC (1.0.X and before) standard calling convention. If a lot of direct assembler
blocks are used, this mode should be used for maximum compatibility.

INLINE Use inline code: the code for the function is inserted whenever it is called.

PASCAL Pascal calling convention.

30

Remark:

CHAPTER 1. COMPILER DIRECTIVES

REGISTER Register calling convention.

SAFECALL Safecall calling convention (used in COM): The called procedure/function saves all
registers.

STDCALL Windows library calling convention.
SOFTFLOAT For ARM processors.

It is equivalent to theCc command-line option.

1.2.5 $COPYRIGHTspecify copyright info

This is intended for the NETWARE version of the compiler: it specifies the copyright information
that can be viewed on a module for a Netware OS.

For example:

{$COPYRIGHT GNU copyleft. compiled using Free Pascal}

1.2.6 $D or $DEBUGINFQ Debugging symbols

When this switch is on, the compiler inserts GNU debugging information in the executable. The
effect of this switch is the same as the command-line swijch

By default, insertion of debugging information is off.

1.2.7 $DESCRIPTION: Application description

This switch is recognised for compatibility only, but is ignored completely by the compiler. At a later
stage, this switch may be activated.

1.2.8 $E : Emulation of coprocessor

This directive controls the emulation of the coprocessor. There is no command-line counterpart for
this directive.

Intel 80x86 version

When this switch is enabled, all floating point instructions which are not supported by standard
coprocessor emulators will give out a warning.

The compiler itself doesn’t do the emulation of the coprocessor.

To use coprocessor emulation unaers go32v2 you must use the emu387 unit, which contains
correct initialization code for the emulator.

UnderLINUX and mosuNIx’es, the kernel takes care of the coprocessor support.

Motorola 680x0 version

When the switch is on, no floating point opcodes are emitted by the code generator. Instead, internal
run-time library routines are called to do the necessary calculations. In this case all real types are
mapped to the single IEEE floating point type.

By default, emulation is on for non-unix targets. For unix targets, floating point emulation (if re-
quired) is handled by the operating system, and by default it is off.

31

CHAPTER 1. COMPILER DIRECTIVES

1.2.9 $G: Generate 80286 code

This option is recognised for Turbo Pascal compatibility, but is ignored, since the compiler works
only on 32-bit and 64-bit processors.

1.2.10 3$INCLUDEPATH: Specify include path.

This option serves to specify the include path, where the compiler looks for includ§$INCLUDEPATH
XXX} will add XX Xto the include pathXXXcan contain one or more paths, separated by semi-colons
or colons.

For example:
{$INCLUDEPATH ../inc;../i386}
{$! strings.inc}

will add the directories./inc and../i386 to the include path of the compiler. The compiler will look
for the filestrings.inc in both these directories, and will include the first found file. This directive is
equivalent to theFi command-line switch.

Caution is in order when using this directive: If you distribute files, the places of the files may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
be fair to say that you should avoid usiabsolutepaths, instead ugelativepaths, as in the example
above. Only

use this directive if you are certain of the places where the files reside. If you are not sure, it is better
practice to use makefiles and makefile variables.

1.2.11 3L or SLOCALSYMBOLSLocal symbol information

This switch (not to be confused with thgL file} file linking directive) is recognised for Turbo
Pascal compatibility, but is ignored. Generation of symbol information is controlled $xkwitch.

1.2.12 3$LIBRARYPATH: Specify library path.

This option serves to specify the library path, where the linker looks for static or dynamic libraries.
{$LIBRARYPATH XXX} will add XXXto the library path.XXX can contain one or more paths,
separated by semi-colons or colons.

For example:
{$LIBRARYPATH /usr/X11/lib;/usr/local/lib}
{$LINKLIB X11}

will add the directoriegusr/X11/lib and/usr/local/lib to the linker library path. The linker will
look for the librarylibX11.so in both these directories, and use the first found file. This directive is
equivalent to theFI command-line switch.

Caution is in order when using this directive: If you distribute files, the places of the libraries may
not be the same as on your machine; moreover, the directory structure may be different. In general it
would be fair to say that you should avoid using this directive. If you are not sure, it is better practice
to use makefiles and makefile variables.

32

CHAPTER 1. COMPILER DIRECTIVES

1.2.13 $Mor SMEMORYMemory sizes

This switch can be used to set the heap and stacksize. It's format is as follows:
{$M StackSize,HeapSize}

where StackSize and HeapSize should be two integer values, greater than 1024. The first
number sets the size of the stack, and the second the size of the heap. (Stack setting is ignored under
LINUX, NETBSD and REEBSD). The two numbers can be set on the command line usingtne

and-Cs switches.

1.2.14 3$MODE Set compiler compatibility mode

The{$MODE} sets the compatibility mode of the compiler. This is equivalent to setting one of the
command-line optionsSo, -Sd , -Sp or-S2. it has the following arguments:

Default Default mode. This reverts back to the mode that was set on the command-line.

Delphi Delphi compatibility mode. All object-pascal extensions are enabled. This is the same as the
command-line optiorSd .

TP Turbo pascal compatibility mode. Object pascal extensions are disabled, except ansistrings,
which remain valid. This is the same as the command-line opSon

FPC FPC mode. This is the default, if no command-line switch is supplied.
OBJFPC Object pascal mode. This is the same as- 8% command-line option.
GPC GNU pascal mode. This is the same as4Bp command-line option.

MACPAS MACPAS mode. In this mode, the compiler tries to be more compatible to commonly
used pascal dialects on the Mac OS, such as Think Pascal, Metrowerks Pascal, MPW Pascal.

For an exact description of each of these modes, see apdendixpagel26.

1.2.15 $N: Numeric processing

This switch is recognised for Turbo Pascal compatibility, but is otherwise ignored, since the compiler
always uses the coprocessor for floating point mathematics.

1.2.16 $0: Overlay code generation
This switch is recognised for Turbo Pascal compatibility, but is otherwise ignored.

1.2.17 $OBJECTPATH Specify object path.

This option serves to specify the object path, where the compiler looks for objec{$i@BJECTPATH
XXX} will add XXXto the object pathXXXcan contain one or more paths, separated by semi-colons
or colons.

For example:
{$OBJECTPATH ../inc;../i386}

{$L strings.o}

33

CHAPTER 1. COMPILER DIRECTIVES

will add the directories./inc and../i386 to the object path of the compiler. The compiler will look
for the file strings.o in both these directories, and will link the first found file in the program. This
directive is equivalent to thé&=0 command-Iline switch.

Caution is in order when using this directive: If you distribute files, the places of the files may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
be fair to say that you should avoid usiabsolutepaths, instead ugelativepaths, as in the example
above. Only use this directive if you are certain of the places where the files reside. If you are not
sure, it is better practice to use makefiles and makefile variables.

1.2.18 $PROFILE : Profiling

This directive turns the generation of profiling code on (or off). It is equivalent teghecommand-
line option. Default iOFF This directive only makes sense in a program source file, not in a unit.

1.2.19 $S: Stack checking

The {$S+} directive tells the compiler to generate stack checking code. This generates code to
check if a stack overflow occurred, i.e. to see whether the stack has grown beyond its maximally
allowed size. If the stack grows beyond the maximum size, then a run-time error is generated, and
the program will exit with exit code 202.

Specifying{$S-} will turn generation of stack-checking code off.
The command-line compiler switeiCt has the same effect as tf&S+} directive.
By default, no stack checking is performed.

1.2.20 $SMARTLINK: Use smartlinking

A unit that is compiled in th¢$SMARTLINK ON} state will be compiled in such a way that it can

be used for smartlinking. This means that the unit is chopped in logical pieces: each procedure is put
in it's own object file, and all object files are put together in a big archive. When using such a unit,
only the pieces of code that you really need or call, will be linked in your program, thus reducing the
size of your executable substantially.

Beware: using smartlinked units slows down the compilation process, because a separate object file
must be created for each procedure. If you have units with many functions and procedures, this can
be a time consuming process, even more so if you use an external assembler (the assembler is called
to assemble each procedure or function code block separately).

The smartlinking directive should be specifieeforethe unit declaration part:
{$SMARTLINK ON}
Unit MyUnit;

Interface

This directive is equivalent to th€x command-line switch.

1.2.21 $THREADNAMESet thread name in Netware
This directive can be set to specify the thread name when compiling for Netware.

34

CHAPTER 1. COMPILER DIRECTIVES

1.2.22 $THREADING Allow use of threads.

This directive is obsolete. It is no longer used, and is recognized for backwards compatibility only.

1.2.23 S$UNITPATH: Specify unit path.

This option serves to specify the unit path, where the compiler looks for unit {{lR&NITPATH
XXX} will add XXXto the unit path XXX can contain one or more paths, separated by semi-colons
or colons.

For example:
{$UNITPATH ../units;../i386/units}
Uses strings;

will add the directories./units and../i386/units to the unit path of the compiler. The compiler will
look for the filestrings.ppu in both these directories, and will link the first found file in the program.
This directive is equivalent to théu command-line switch.

Caution is in order when using this directive: If you distribute files, the places of the files may not be
the same as on your machine; moreover, the directory structure may be different. In general it would
be fair to say that you should avoid usiabsolutepaths, instead ugelativepaths, as in the example
above. Only use this directive if you are certain of the places where the files reside. If you are not
sure, it is better practice to use makefiles and makefile variables.

1.2.24 $VERSION: Specify DLL version.

On WINDOWS, this can be used to specify a version number for a library. This version number
will be used when the library is installed, and can be viewed in the Windows Explorer by opening
the property sheet of the DLL and looking on the tab 'Version’. The version number consists of
minimally one, maximum 3 numbers:

{SVERSION 1}
Or:

{$VERSION 1.1}
And even:
{$VERSION 1.1.1}

This can not yet be used for executables on Windows, but may be activated in the future.

1.2.25 $Wor $STACKFRAMESGenerate stackframes

The{$W} switch directive controls the generation of stackframes. In the on state, the compiler will
generate a stackframe for every procedure or function.

In the off state, the compiler will omit the generation of a stackframe if the following conditions are
satisfied:

e The procedure has no parameters.

e The procedure has no local variables.

35

CHAPTER 1. COMPILER DIRECTIVES

e If the procedure is not anssembler procedure, it must not havesam ...end; block.

e itis not a constructor or destructor.

If these conditions are satisfied, the stack frame will be omitted.

1.2.26 $Y or $REFERENCEINFO Insert Browser information

This switch controls the generation of browser inforation. It is recognized for compatibility with
Turbo Pascal and Delphi only, as Browser information generation is not yet fully supported.

36

Chapter 2

Using conditionals, messages and
macros

The Free Pascal compiler supports conditionals as in normal Turbo Pascal. It does, however, more
than that. It allows you to make macros which can be used in your code, and it allows you to define
messages or errors which will be displayed when compiling. It also has support for compile-time
variables and compile-time expressions, as commonly found in Mac OS compilers.

2.1 Conditionals

The rules for using conditional symbols are the same as under Turbo Pascal or Delphi. Defining a
symbol goes as follows:

{$define Symbol}

From this point on in your code, the compiler knows the symiyrhbol . Symbols are, like the
Pascal language, case insensitive.

You can also define a symbol on the command line. -tt&ymbol option defines the symbol
Symbol . You can specify as many symbols on the command line as you want.

Undefining an existing symbol is done in a similar way:
{$undef Symbol}

If the symbol didn’t exist yet, this doesn’t do anything. If the symbol existed previously, the symbol
will be erased, and will not be recognized any more in the code followind®badef ...}
statement.

You can also undefine symbols from the command line withtheommand-line switch.

To compile code conditionally, depending on whether a symbol is defined or not, you can enclose
the code in d$ifdef Symbol} ...{$endif} pair. For instance the following code will never
be compiled:

{$undef MySymbol}
{$ifdef Mysymbol}

DoSomething;
{$endif}

37

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

Similarly, you can enclose your code in{$&ifndef Symbol} ...{$endif} pair. Then the
code between the pair will only be compiled when the used symbol doesn'’t exist. For example, in
the following example, the call to tHeoSomething will always be compiled:

{$undef MySymbol}
{$ifndef Mysymbol}
DoSomething;

{$endif}
You can combine the two alternatives in one structure, namely as follows

{$ifdef Mysymbol}
DoSomething;
{$else}
DoSomethingElse
{$endif}

In this example, iMySymbol exists, then the call tboSomething will be compiled. If it doesn’t
exist, the call tdoSomethingElse is compiled.

2.1.1 Predefined symbols

The Free Pascal compiler defines some symbols before starting to compile your program or unit.
You can use these symbols to differentiate between different versions of the compiler, and between
different compilers. To get all the possible defines when starting compilation, see ap@endix

Remark: Symbols, even when they’re defined in the interface part of a unit, are not available outside that unit.

2.2 Macros

Macros are very much like symbols or compile-time variables in their syntax, the difference is that

macros have a value whereas a symbol simply is defined or is not defined. Furthermore, following
the definition of a macro, any occurrence of the macro in the pascal source will be replaced with the
value of the macro (much like the macro support in the C preprocessor). If macro support is required,
the-Sm command-line switch must be used to switch it on, or the directive must be inserted:

{$SMACROS ON}

otherwise macros will be regarded as a symbol.

Defining a macro in a program is done in the same way as defining a symbo{$iefine}
preprocessor statemeént

{$define ident:=expr}

If the compiler encounterglent in the rest of the source file, it will be replaced immediately by
expr . This replacement works recursive, meaning that when the compiler expanded one macro, it
will look at the resulting expression again to see if another replacement can be made. This means
that care should be taken when using macros, because an infinite loop can occur in this manner.

Here are two examples which illustrate the use of macros:

In compiler versions older than 0.9.8, the assignment operator for a macros wadmit =

38

Remark:

Remark:

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$define sum:=a:=a+b;}

sum { will be expanded to ’a:=a+b;’
remark the absence of the semicolon}

{$define b:=100}
sum { Will be expanded recursively to a:=a+100; }

The previous example could go wrong:
{$define sum:=a:=a+b;}

sum { will be expanded to ’'a:=a+b;
remark the absence of the semicolon}

{$define b=sum} { DON'T do this !!!}
sum { Will be infinitely recursively expanded \dots }

On my system, the last example results in a heap error, causing the compiler to exit with a run-time
error 203.

Macros defined in the interface part of a unit are not available outside that unit! They can just be
used as a notational convenience, or in conditional compiles.

By default the compiler predefines three macros, containing the version number, the release number
and the patch number. They are listed in taBld)(

Table 2.1: Predefined macros

Symbol Contains

FPC_VERSION The version number of the compiler.
FPC_RELEASE The release number of the compiler.
FPC_PATCH The patch number of the compiler.

Don't forget that macro support isn't on by default. It must be turned on withiShecommand-line
switch or using th§$MACROS ONHirective.

2.3 Compile time variables

In MacPas mode, compile time variables can be defined. They are distinct from symbols in that they
have a value, and they are distinct from macros, in that they cannot be used to replace portions of the
source text with their value. Their behaviour are compatible with compile time variables found in
popular pascal compilers for Macintosh.

A compile time variable is defined like this:
{$SETC ident:= expression}
The expression is a so-called compile time expression, which is evaluated once, at the point where

the {$SETC } directve is encountered in the source. The resulting value is then assigned to the
compile time variable.

39

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

A second{$SETC } directive for the same variable overwrites the previous value.

Contrary to macros and symbols, compile time variables defined in the Interface part of a unit are
exported. This means their value will be available in units which uses the unit in which the variable
is defined. This requires that both units are compiled in macpas mode.

The big difference between macros and compile time variables is that the former is a pure text sub-
stitution mechanism (much like in C), where the latter resemble normal programming language vari-
ables, but they are available to the compiler only.

In mode MacPas, compile time variables are always enabled.

2.4 Compile time expressions

2.4.1 Definition

Except for the regular Turbo Pascal constructs for conditional compilation, the Free Pascal compiler
also supports a stronger conditional compile mechanism:{$iffe construct, which can be used
to evaluate compile-time expressions.

The prototype of this construct is as follows:

{$if expr}
CompileTheseLines;
{$else}
BetterCompileTheseLines;
{$endif}

The content of an expression is restricted to what can be evaluated at compile-time:

Constants (strings, numbers)

e Macros

Compile time variables (mode MacPas only)

Pascal constant expression (mode Delphi only)

The symbols are replaced with their value. For macros recursive substitution might occur.
The following boolean operators are available:

=, <>, > < >z, <= AND, NOT, OR, IN

The IN operator tests for presence of a compile-time variable in a set.
The following functions are also available:

TRUE Defined in MacPas mode only, it evaluates to True. In other modes, 1 can be used.
FALSE Defined in MacPas mode only, it evaluates to False. In other modes, 0 can be used.

DEFINED(sym) will evaluate toTRUEIf a compile time symbol is defined. In MacPas mode, the
parentheses are optional, i.e.

{$IF DEFINED(MySym)}

is equivalent to

40

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$IF DEFINED MySym}

UNDEFINED sym will evaluate toTRUEIf a compile time symbol isnot defined, and~=ALSE
otherwise (mode MacPas only).

OPTION(opt) evaluates tad RUEIf a compiler option is set (mode MacPas only). It is equivalent
to the{$IFOPT } directive.

SIZEOF(passym) Evaluates to the size of a pascal type, variable or constant.

DECLARED(passym) Evaluates toTRUEIf the pascal symbol is declared at this point in the
sources, oFALSEIf it is not yet defined.

In expressions, the following rules are used for evaluation:

o If all parts of the expression can be evaluated as booleans (with 1 and 0 repre3&uiEgnd
FALSE, the expression is evaluated using booleans.

o If all parts of the expression can be evaluated as nuumbers, then the expression is evaluated
using numbers.

¢ In all other cases, the expression is evaluated using strings.

If the complete expression evaluates@b , then it is considered false and rejected. Otherwise it is
considered true and accepted. This may have unexpected consequences:

{$if O}
will evaluate toFalse and be rejected, while
{$if 00}

will evaluate toTrue .

2.4.2 Usage
The basic usage of compile time expressions is as follows:

{$if expr}
CompileTheseLines;
{$endif}

If expr evaluates tdRUE thenCompileTheseLines will be included in the source.
Like in regular pascal, it is possible to UELSE } :

{$if expr}
CompileTheseLines;
{$else}
BetterCompileTheseLines;
{$endif}

If expr evaluatestdrue ,CompileTheseLines will be compiled. OtherwiseBetterCompileTheseLines
will be compiled.

Additionally, it is possible to use var{$ELSEIF}

41

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$IF expr}
..
{$SELSEIF expr}
..
{$ELSEIF expr}
..
{$ELSE}
..
{SENDIF}

In addition to the above constructs, which are also supported by Delphi, the above is completely
equivalent to the following construct in MacPas mode:

{$IFC expr}
...
{$ELIFC expr}
{éELIFC expr}
@ELSEC}
{éENDC}

that is,IFC corresponds ttF , ELIFC corresponds t&LSEIF, ELSECis equivalent withELSEC
andENDG s the equivalent cENDIF. Additionally, IFEND is an equivalent t&NDIF:

{$IF EXPR}
CompileThis;
{$ENDIF}

In MacPas mode it is possible to mix these constructs.
The following example shows some of the possibilities:

{sifdef fpc}

var
y : longint;
{$else fpc}
var
z : longint;

{$endif fpc}

var
x : longint;

begin

{$if (fpc_version=0) and (fpc_release>6) and (fpc_patch>4)}
{$info At least this is version 0.9.5}

{$else}

{$fatal Problem with version check}

{$endif}

42

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$define x:=1234}

{$if x=1234}

{$info x=1234}

{$else}

{$fatal x should be 1234}
{$endif}

{$if 12asdf and 12asdf}

{$info $if 12asdf and 12asdf is ok}
{$else}

{$fatal $if 12asdf and 12asdf rejected}
{$endif}

{$if 0 or 1}

{$info $if 0 or 1 is ok}
{$else}

{$fatal $if O or 1 rejected}
{$endif}

{$if 0}

{$fatal $if O accepted}
{$else}

{$info $if O is ok}
{$endif}

{$if 12=12}

{$info $if 12=12 is ok}
{$else}

{$fatal $if 12=12 rejected}
{$endif}

{$if 12<>312}

{$info $if 12<>312 is ok}
{$else}

{$fatal $if 12<>312 rejected}
{$endif}

{$if 12<=312}

{$info $if 12<=312 is ok}
{$else}

{$fatal $if 12<=312 rejected}
{$endif}

{$if 12<312}

{$info $if 12<312 is ok}
{$else}

{$fatal $if 12<312 rejected}
{$endif}

{$if al2=al2}

{$info S$if al2=al2 is ok}
{$else}

{$fatal $if al2=al2 rejected}

43

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$endif}

{$if a12<=z312}

{$info $if al2<=z312 is ok}
{$else}

{$fatal $if a12<=z312 rejected}
{$endif}

{$if al2<z312}

{$info $if a12<z312 is ok}
{$else}

{$fatal $if al2<z312 rejected}
{$endif}

{$if not(0)}

{$info S$if not(0) is OK}
{$else}

{$fatal $if not(0) rejected}
{$endif}

{$IF NOT UNDEFINED FPC}
/I Detect FPC stuff when compiling on MAC.
{$SETC TARGET_RT_MAC_68881:= FALSE}
{$SETC TARGET_OS_MAC := (NOT UNDEFINED MACOS)

OR (NOT UNDEFINED DARWIN)}
{$SETC TARGET_OS_WIN32 = NOT UNDEFINED WIN32}
{$SETC TARGET_OS_UNIX = (NOT UNDEFINED UNIX)

AND (UNDEFINED DARWIN)}
{$SETC TYPE_EXTENDED := TRUE}
{$SETC TYPE_LONGLONG = FALSE}
{$SETC TYPE_BOOL '= FALSE}

{$ENDIF}

{$| nfo ***}

{$info * Now have to follow at least 2 error messages: *}
[BINfO Hrortrtrr R AR KSR KSR R KT KRR IARAKY

{$if not(0}
{$endif)

{$if not(<}
{$endif}

end.

As you can see from the example, this construct isn’t useful when used with normal symbols, only if
you use macros, which are explained in secfidh page38. They can be very useful. When trying
this example, you must switch on macro support, with-B@ command-line switch.

The following example works only in MacPas mode:

{$SETC TARGET_OS_MAC := (NOT UNDEFINED MACOS) OR (NOT UNDEFINED DARWIN)}

{$SETC DEBUG := TRUE}

44

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

{$SETC VERSION := 4}
{$SETC NEWMODULEUNDERDEVELOPMENT := (VERSION >= 4) OR DEBUG}

{$IFC NEWMODULEUNDERDEVELOPMENT}
{$IFC TARGET_OS_MAC}
... hew mac code
{$ELSEC}
. new other code
{$SENDC}
{$ELSEC}
... old code
{$ENDC}

2.5 Messages

Free Pascal lets you define normal, warning and error messages in your code. Messages can be used
to display useful information, such as copyright notices, a list of symbols that your code reacts on
etc.

Warnings can be used if you think some part of your code is still buggy, or if you think that a certain
combination of symbols isn't useful.

Error messages can be useful if you need a certain symbol to be defined, to warn that a certain
variable isn’t defined, or when the compiler version isn't suitable for your code.

The compiler treats these messages as if they were generated by the compiler. This means that if you
haven’t turned on warning messages, the warning will not be displayed. Errors are always displayed,
and the compiler stops if 50 errors have occurred. After a fatal error, the compiler stops at once.

For messages, the syntax is as follows:
{$Message Message text}

or

{$Info Message text}

For notes:

{$Note Message text}

For warnings:

{$Warning Warning Message text}
For hints:

{$Hint Warning Message text}
For errors:

{$Error Error Message text}
Lastly, for fatal errors:

{$Fatal Error Message text}

45

Remark:

CHAPTER 2. USING CONDITIONALS, MESSAGES AND MACROS

or
{$Stop Error Message text}

The difference betweebError and$FatalError or$Stop messages is that when the compiler
encounters an error, it still continues to compile. With a fatal error, the compiler stops.

You cannot use thg " character in your message, since this will be treated as the closing brace of
the message.

As an example, the following piece of code will generate an error when the syRelopliredVar
isn’t defined:

{$ifndef RequiredVar}
{$Error Requiredvar isn't defined !}
{$endif}

But the compiler will continue to compile. It will not, however, generate a unit file or a program
(since an error occurred).

46

Chapter 3

Using Assembly language

Free Pascal supports inserting assembler statements in between Pascal code. The mechanism for
this is the same as under Turbo Pascal. There are, however some substantial differences, as will be
explained in the following sections.

3.1 Intel 80x86 Inline assembler

3.1.1 Intel syntax
Free Pascal supports Intel syntax for the Intel family of Ix86 processorsastitsblocks.

The Intel syntax in youasm block is converted to AT&T syntax by the compiler, after which it

is inserted in the compiled source. The supported assembler constructs are a subset of the normal
assembly syntax. In what follows we specify what constructs are not supported in Free Pascal, but
which exist in Turbo Pascal:

e TheTBYTEQqualifier is not supported.

e Theé& identifier override is not supported.
e TheHIGH operator is not supported.

e TheLOWbperator is not supported.

e TheOFFSETandSEGoperators are not supported. UdeA and the variougxx instructions
instead.

e Expressions with constant strings are not allowed.
e Access to record fields via parenthesis is not allowed

e Typecasts with normal pascal types are not allowed, only recognized assembler typecasts are
allowed. Example:

mov al, byte ptr MyWord -- allowed,
mov al, byte(MyWord) -- allowed,
mov al, shortint(MyWord) -- not allowed.

e Pascal type typecasts on constants are not allowed. Example:

const s= 10; const t = 32767;

47

CHAPTER 3. USING ASSEMBLY LANGUAGE

in Turbo Pascal:

mov al, byte(s) -- useless typecast.
mov al, byte(t) -- syntax error!

In this parser, either of those cases will give out a syntax error.

e Constant references expressions with constants only are not allowed (in all cases they do not
work in protected mode, undernux i386). Examples:

mov al,byte ptr ['c’] -- not allowed.
mov al,byte ptr [100h] -- not allowed.

(This is due to the limitation of Turbo Assembler).
e Brackets within brackets are not allowed

e Expressions with segment overrides fully in brackets are presently not supported, but they can
easily be implemented in BuildReference if requested. Example:

mov al,[ds:bx] -- not allowed
use instead:
mov al,ds:[bx]

e Possible allowed indexing are as follows:
— Sreg:[REG+REG*SCALING+/-disp]
— SReg:[REG+/-disp]
— SReg:[REG]
— SReg:[REG+REG+/-disp]
— SReg:[REG+REG*SCALING]

WhereSreg is optional and specifies the segment overridetes:

1. The order of terms is important contrary to Turbo Pascal.
2. The Scaling value must be a value, and not an identifier to a symbol. Examples:

const myscale = 1;

.rﬁ.ov al,byte ptr [esi+ebx*myscale] -- not allowed.
use:
mov al, byte ptr [esi+ebx*1]
e Possible variable identifier syntax is as follows: (Id = Variable or typed constant identifier.)

1. ID
2. [ID]
3. [ID+expr]
4. ID[expr]
Possible fields are as follow:

1. ID.subfield.subfield ...

48

CHAPTER 3. USING ASSEMBLY LANGUAGE

2. [ref].ID.subfield.subfield ...
3. [ref].typename.subfield ...

e Local abels: Contrary to Turbo Pascal, local labels, must at least contain one character after
the local symbol indicator. Example:

@: -- not allowed

use instead, for example:

@1: -- allowed

e Contrary to Turbo Pascal local references cannot be used as references, only as displacements.
Example:
Ids si,@mylabel -- not allowed

e Contrary to Turbo PascdbEGCSSEGDSSEGESNdSEGSSegment overrides are presently
not supported. (This is a planned addition though).

e Contrary to Turbo Pascal where memory sizes specifiers can be practically anywhere, the Free
Pascal Intel inline assembler requires memory size specifiers to be outside the brackets. Ex-

ample:

mov al,[byte ptr myvar] -- not allowed.
use:

mov al,byte ptr [myvar] -- allowed.

e Base and Index registers must be 32-bit registers. (limitation of the GNU Assembler).

e XLAT s equivalent toXLATB.

e Only Single and Double FPU opcodes are supported.

e Floating point opcodes are currently not supported (except those which involve only floating
point registers).

The Intel inline assembler supports the following macros:

@Result represents the function result return value.

Self represents the object method pointer in methods.

3.1.2 AT&T Syntax

Free Pascal uses tl@iu as assembler to generate its object files for the Intel Ix86 processors. Since
theGNU assembler uses AT&T assembly syntax, the code you write should use the same syntax. The
differences between AT&T and Intel syntax as used in Turbo Pascal are summarized in the following:

e The opcode names include the size of the operand. In general, one can say that the AT&T
opcode name is the Intel opcode name, suffixed with'a W or ' b’ for, respectively, longint
(32 bit), word (16 bit) and byte (8 bit) memory or register references. As an example, the Intel
constructmov al bl is equivalent to the AT&T stylerhovb %bl,%al ' instruction.

49

CHAPTER 3. USING ASSEMBLY LANGUAGE

e AT&T immediate operands are designated with '$’, while Intel syntax doesn't use a prefix for
immediate operands. Thus the Intel constrmoov ax, 2 'becomesmovb $2, %al ’in
AT&T syntax.

e AT&T register names are preceded byasign. They are undelimited in Intel syntax.

e AT&T indicates absolute jump/call operands with,’ Intel syntax doesn’t delimit these ad-
dresses.

e The order of the source and destination operands are switched. AT&T syntaySosese,
Dest ', while Intel syntax featuresDest, Source '. Thus the Intel construciedd eax,
4’ transforms to addl $4, %eax 'inthe AT&T dialect.

e Immediate long jumps are prefixed with the prefix. Thus the Intel¢all/jmp section:offset’
is transformed toltall/ljmp $section,$offset ". Similarly the far returnislret ’,
instead of the Intelret far °

e Memory references are specified differently in AT&T and Intel assembly. The Intel indirect
memory reference

Section:[Base + Index*Scale + Offs]
is written in AT&T syntax as:
Section:Offs(Base,Index,Scale)

WhereBase andIndex are optional 32-bit base and index registers, Sndle is used to
multiply Index . It can take the values 1,2,4 and 8. T8ection is used to specify an
optional section register for the memory operand.

More information about the AT&T syntax can be found in #ge manual, although the following
differences with normal AT&T assembly must be taken into account:

e Only the following directives are presently supported:

.byte
.word
Jong
.ascii
.asciz
.globl

e The following directives are recognized but are not supported:

.align
comm

Eventually they will be supported.
e Directives are case sensitive, other identifiers are not case sensitive.
e Contrary to GAS local labels/symbatsuststart with.L
e The not operatot’ is not supported.
e String expressions in operands are not supported.

e CBTW,CWTL,CWTD and CLTD are not supported, use the normal intel equivalents instead.

50

CHAPTER 3. USING ASSEMBLY LANGUAGE

e Constant expressions which represent memory references are not allowed even though constant
immediate value expressions are supported. Examples:

const myid = 10;

movl $myid,%eax -- allowed
movl myid(%esi),%eax -- not allowed.

e When the.globl directive is found, the symbol following it is made public and is immedi-
ately emitted. Therefore label names with this name will be ignored.

e Only Single and Double FPU opcodes are supported.
The AT&T inline assembler supports the following macros:

__RESULT represents the function result return value.
__SELF represents the object method pointer in methods.

__ OLDEBP represents the old base pointer in recusrive routines.

3.2 Motorola 680x0 Inline assembler

The inline assembler reader for the Motorola 680x0 family of processors, uses the Motorola Assem-
bler syntax (g.v). A few differences do exit:

e Local labels start with the @ character, such as
@MyLabel:

e The XDEFdirective in an assembler block will make the symbol available publicly with the
specified name (this name is case sensitive)

e The DB DWDDdirectives can only be used to declare constants which will be stored in the
code segment.

e TheAlign directive is not supported.

e Arithmetic operations on constant expression use the same operands as the intel version (e.g :
AND XOR...)

e Segment directives are not supported

e Only 68000 and a subset of 68020 opcodes are currently supported

The inline assembler supports the following macros:

@Result represents the function result return value.

Self represents the object method pointer in methods.

51

CHAPTER 3. USING ASSEMBLY LANGUAGE

3.3 Signaling changed registers

When the compiler uses variables, it sometimes stores them, or the result of some calculations, in
the processor registers. If you insert assembler code in your program that modifies the processor
registers, then this may interfere with the compiler’s idea about the registers. To avoid this problem,
Free Pascal allows you to tell the compiler which registers have changed. The compiler will then
avoid using these registers. Telling the compiler which registers have changed is done by specifying
a set of register names behind an assembly block, as follows:

asm
end ['R1, ... /Rn7;

HereR1to Rn are the names of the registers you modify in your assembly code.
As an example:

asm
movl BP,%eax

movl 4(%eax),%eax
movl %eax,_ RESULT
end [EAXTY;

This example tells the compiler that tB&Xregister was modified.

52

Chapter 4

Generated code

The Free Pascal compiler relies on the assembler to make object files. It generates just the assembly
language file. In the following two sections, we discuss what is generated when you compile a unit
or a program.

4.1 Units

When you compile a unit, the Free Pascal compiler generates 2 files:

1. A unit description file.

2. An assembly language file.

The assembly language file contains the actual source code for the statements in your unit, and the
necessary memory allocations for any variables you use in your unit. This file is converted by the
assembler to an object file (with extensiar) which can then be linked to other units and your
program, to form an executable.

By default, the assembly file is removed after it has been compiled. Only in the case -sf the
command-line option, the assembly file will be left on disk, so the assembler can be called later. You
can disable the erasing of the assembler file with-theswitch.

The unit file contains all the information the compiler needs to use the unit:
1. Other used units, both in interface and implementation.
2. Types and variables from the interface section of the unit.

3. Function declarations from the interface section of the unit.

4. Some debugging information, when compiled with debugging.

The detailed contents and structure of this file are described in the first appendix. You can examine a
unit description file using thepudump program, which shows the contents of the file.

If you want to distribute a unit without source code, you must provide both the unit description file
and the object file.

You can also provide a C header file to go with the object file. In that case, your unit can be used by
someone who wishes to write his programs in C. However, you must make this header file yourself
since the Free Pascal compiler doesn’'t make one for you.

53

CHAPTER 4. GENERATED CODE

4.2 Programs

When you compile a program, the compiler produces again 2 files:

1. An assembly language file containing the statements of your program, and memory allocations
for all used variables.

2. Alinker response file. This file contains a list of object files the linker must link together.

The link response file is, by default, removed from the disk. Only when you specify themmand-
line option or when linking fails, then the file is left on the disk. It is narfiekl.res.

The assembly language file is converted to an object file by the assembler, and then linked together
with the rest of the units and a program header, to form your final program.

The program header file is a small assembly program which provides the entry point for the program.
This is where the execution of your program starts, so it depends on the operating system, because
operating systems pass parameters to executables in wildly different ways.

It's name isprt0.0, and the source file resides jmt0.as or some variant of this name. It usually
resided where the system unit source for your system resides. It's main function is to save the
environment and command-line arguments and set up the stack. Then it calls the main program.

54

Chapter 5

Intel MMX support

5.1 Whatis it about?

Free Pascal supports the new MMX (Multi-Media extensions) instructions of Intel processors. The
idea of MMX is to process multiple data with one instruction, for example the processor can add
simultaneously 4 words. To implement this efficiently, the Pascal language needs to be extended. So
Free Pascal allows to add for example @aveay[0..3] of word , IfMMX support is switched

on. The operation is done by tih@M>unit and allows people without assembler knowledge to take
advantage of the MMX extensions.

Here is an example:

uses
MMX; { include some predefined data types }

const
{ tmmxword = array[0..3] of word;, declared by unit MMX }
wl : tmmxword = (111,123,432,4356);
w2 : tmmxword (4213,63456,756,4);

var
w3 : tmmxword;
| : longint;
begin
if is_mmx_cpu then { is_mmx_cpu is exported from unit mmx }
begin
{$mmx+} { turn mmx on }
w3:=wl+w2;
{$mmx-}
end
else
begin
for i:=0 to 3 do
w3[i]:=wi[i]+w2[i];
end;
end.

55

CHAPTER 5. INTEL MMX SUPPORT

5.2 Saturation support

One important point of MMX is the support of saturated operations. If a operation would cause
an overflow, the value stays at the highest or lowest possible value for the data type: If you use
byte values you get normally 250+12=6. This is very annoying when doing color manipulations or
changing audio samples, when you have to do a word add and check if the value is greater than 255.
The solution is saturation: 250+12 gives 255. Saturated operations are supported/ithmat. If

you want to use them, you have simple turn the switch saturatiosaturation+

Here is an example:

Program SaturationDemo;

{

example for saturation, scales data (for example audio)
with 1.5 with rounding to negative infinity

}
uses mmx;
var
audiol : tmmxword;
i: smallint;
const
helpdatal : tmmxword = ($c000,$c000,$c000,$c000);
helpdata2 : tmmxword = ($8000,$8000,$8000,$8000);
begin
{ audiol contains four 16 bit audio samples }
{$Smmx+}

{ convert it to $8000 is defined as zero, multiply data with 0.75 }
audiol:=(audiol+helpdata2)*(helpdatal);
{$saturation+}
{ avoid overflows (all values>$7fff becomes $ffff) }
audiol:=(audiol+helpdata2)-helpdata2;
{$saturation-}
{ now mupltily with 2 and change to integer }
for i:=0 to 3 do
audiol[i] := audiol[i] shl 1;
audiol:=audiol-helpdata?2;
{$mmx-}
end.

5.3 Restrictions of MMX support

In the beginning of 1997 the MMX instructions were introduced in the Pentium processors, so mul-
titasking systems wouldn’t save the newly introduced MMX registers. To work around that problem,
Intel mapped the MMX registers to the FPU register.

The consequence is that you can’t mix MMX and floating point operations. After using MMX
operations and before using floating point operations, you have to call the r&MikEDf the MMX
unit. This routine restores the FPU registers.

Careful: The compiler doesn’t warn if you mix floating point and MMX operations, so be careful.
The MMX instructions are optimized for multi media (what else?). So it isn't possible to perform

56

CHAPTER 5. INTEL MMX SUPPORT

each operation, some operations give a type mismatch, see sedtfonthe supported MMX oper-
ations

An important restriction is that MMX operations aren’t range or overflow checked, even when you
turn range and overflow checking on. This is due to the nature of MMX operations.

The MMXunit must always be used when doing MMX operations because the exit code of this unit
clears the MMX unit. If it wouldn’t do that, other program will crash. A consequence of this is that
you can’'t use MMX operations in the exit code of your units or programs, since they would interfere
with the exit code of théMXunit. The compiler can’t check this, so you are responsible for this!

5.4 Supported MMX operations

The following operations are supported in the compiler when MMX extensions are enabled:

e addition ()

e subtraction{)

e multiplication(*)

¢ logical exclusive orxor)
¢ logical and énd)

e logical or (or)

e sign change-()

5.5 Optimizing MMX support

Here are some helpful hints to get optimal performance:

e TheEMMSall takes a lot of time, so try to seperate floating point and MMX operations.

e Use MMX only in low level routines because the compiler saves all used MMX registers when
calling a subroutine.

e The NOT-operator isn’t supported natively by MMX, so the compiler has to generate a workaround
and this operation is inefficient.

e Simple assignements of floating point numbers don’t access floating point registers, so you
need no call to th&EMMSrocedure. Only when doing arithmetic, you need to callEMMS
procedure.

57

Chapter 6

Code Issues

This chapter gives detailed information on the generated code by Free Pascal. It can be useful to
write external object files which will be linked to Free Pascal created code blocks.

6.1 Register Conventions

The compiler has different register conventions, depending on the target processor used; some of the
registers have specific uses during the code generation. The following section describes the generic
names of the registers on a platform per platform basis. It also indicates what registers are used as
scratch registers, and which can be freely used in assembler blocks.

6.1.1 accumulator register

The accumulator register is at least a 32-bit integer hardware register, and is used to return results of
function calls which return integral values.

6.1.2 accumulator 64-bit register

The accumulator 64-bit register is used in 32-bit environments and is defined as the group of registers
which will be used when returning 64-bit integral results in function calls. This is a register pair.

6.1.3 float result register
This register is used for returning floating point values from functions.

6.1.4 self register

The self register contains a pointer to the actual object or class. This register gives access to the data
of the object or class, and the VMT pointer of that object or class.

6.1.5 frame pointer register

The frame pointer register is used to access parameters in subroutines, as well as to access local
variables. References to the pushed prameters and local variables are constructed using the frame

58

CHAPTER 6. CODE ISSUES

pointer.t.

6.1.6 stack pointer register

The stack pointer is used to give the address of the stack area, where the local variables and parame-
ters to subroutines are stored.

6.1.7 scratch registers

Scratch registers are those which can be used in assembler blocks, or in external object files without
requiring any saving before usage.

6.1.8 Processor mapping of registers

This indicates what registers are used for what purposes on each of the processors supported by Free
Pascal. It also indicates which registers can be used as scratch registers.

Intel 80x86 version

Table 6.1: Intel 80x86 Register table

Generic register name CPU Register name
accumulator EAX

accumulator (64-bit) high /low EDX:EAX

float result FP(0)

self ESI

frame pointer EBP

stack pointer ESP

scratch regs. N/A

Motorola 680x0 version

Table 6.2: Motorola 680x0 Register table

Generic register name CPU Register name
accumulator Dd

accumulator (64-bit) high/low DO0:D1

float result FP®

self A5

frame pointer A6

stack pointer A7

scratch regs. DO, D1, A0, Al, FPO, FP1

1The frame pointer is not available on all platforms

2For compatibility with some C compilers, when the function result is a pointer and is declared with the cdecl convention,
the result is also stored in the AQ register

30n simulated FPU’s the result is returned in DO

59

CHAPTER 6. CODE ISSUES

6.2 Name mangling

Contrary to most C compilers and assemblers, all labels generated to pascal variables and routines
have mangled namésThis is done so that the compiler can do stronger type checking when parsing
the pascal code. It also permits function and procedure overloading.

6.2.1 Mangled names for data blocks

The rules for mangled names for variables and typed constants are as follows:

All variable names are converted to upper case

Variables in the main program or private to a unit have an _ prepended to their names

Typed constants in the main program have an TC__ prepended to their names

Public variables in a unit have their unit name prepended to them : U_UNITNAME_

Public and private typed constants in a unit have their unit name prepended to them :TC__ UNITNAMESS

Currently, in Free Pascal v1.0, if you declare a variable in unit n@mi¢ , with the name a, and
you declare the same variable with nam@ unit nametunit_ , you will get the same mangled
name. This is a limitation of the compiler which will be fixed in release v1.1.

Examples

unit testvars;

interface

const

publictypedconst : integer = O;
var

publicvar : integer;
implementation

const

privatetypedconst : integer = 1;
var

privatevar : integer;

end.

Will give the following assembler output under GNU as :

file "testvars.pas"
text

.data

4This can be avoided by using thias orcdecl modifiers

60

CHAPTER 6. CODE ISSUES

[6] publictypedconst : integer = O;
.globl TC__TESTVARS$$_PUBLICTYPEDCONST

TC__

TESTVARS$$_PUBLICTYPEDCONST:

.short 0
[12] privatetypedconst : integer = 1;

TC

TESTVARS$$ PRIVATETYPEDCONST:

.short 1

.bss

[8] publicvar : integer;

.comm U_TESTVARS_PUBLICVAR,2
[14] privatevar : integer;

dcomm _PRIVATEVAR,2

6.2.2 Mangled names for code blocks

The rules for mangled names for routines are as follows:

All routine names are converted to upper case.
Routines in a unit have their unit name prepended to them : _UNITNAMES$$
All Routines in the main program have a _ prepended to them.

All parameters in a routine are mangled using the type of the parameter (in uppercase) prepended
by the $ character. This is done in left to right order for each parameter of the routine.

Objects and classes use special mangling : The class type or object type is given in the mangled
name; The mangled name is as follows: _$$ TYPEDECL_$$ optionally preceded by mangled
name of the unit and finishing with the method name.

The following constructs

unit testman;

interface

type

myobject = object
constructor init;
procedure mymethod;
end;

implementation

constructor myobject.init;
begin
end;

procedure myobject.mymethod;
begin
end;

function myfunc: pointer;
begin

61

CHAPTER 6. CODE ISSUES

end;

procedure myprocedure(var x:. integer; y: longint; z : pchar);
begin
end;

end.

will result in the following assembler file for the Intel 80x86 target:
file "testman.pas"

text

.balign 16

.globl _TESTMAN$$_$$ MYOBJECT_$$_INIT
TESTMANS$$$$ MYOBJECT_$$_INIT:
pushl %ebp

movl %esp,%ebp

subl $4,%esp

movl $0,%edi

call FPC_HELP_CONSTRUCTOR

jz L5

jmp .L7

.L5:

movl 12(%ebp),%esi

movl $0,%edi

call FPC_HELP_FAIL

.L7:

movl %esi,%eax

testl %esi,%esi

leave

ret $8

.balign 16

.globl _TESTMANS$$_$$ MYOBJECT_$$ MYMETHOD
TESTMANS$$$$ MYOBJECT_$$_MYMETHOD:
pushl %ebp

movl %esp,%ebp

leave

ret $4

.balign 16

_TESTMANS$$_MYFUNC:

pushl %ebp

movl %esp,%ebp

subl $4,%esp

movl -4(%ebp),%eax

leave

ret

.balign 16

_TESTMAN$$ MYPROCEDURESINTEGER$LONGINT$PCHAR:
pushl %ebp

movl %esp,%ebp

leave

ret $12

62

CHAPTER 6. CODE ISSUES

6.2.3 Modifying the mangled names

To make the symbols externally accessible, it is possible to give nicknames to mangled names, or to
change the mangled name directly. Two modifiers can be used:

cdecl: A function that has @decl modifier, will be used with C calling conventions, that is, the
caller clears the stack. Also the mangled name will be the naxaetlyas it is declared.
cdecl is part of the function declaration, and hence must be present both in the interface and
implementation section of a unit.

alias: Thealias modifier can be used to assign a second assembler label to your function. This
label has the same name as the alias hame you declared. This doesn’t modify the calling
conventions of the function. In other words, tleas modifier allows you to specify another
name (a nickname) for your function or procedure.

The prototype for an aliased function or procedure is as follows:
Procedure AliasedProc; alias : 'AliasName’;

The proceduréliasedProc will also be known ag\liasName . Take care, the nhame you
specify is case sensitive (as C is).

Furthermore, thexports section of a library is also used to declare the names that will be exported
by the shared library. The names in the exports section are case-sensitive (while the actual declaration
of the routine is not). For more information on the creating shared libraries, cHapeagel08

6.3 Calling mechanism

Procedures and Functions are called with their parameters on the stack. Contrary to Turb@Pascal,
parameters are pushed on the stack, and they are prighetb left, instead of left to right for Turbo
Pascal. This is especially important if you have some assembly subroutines in Turbo Pascal which
you would like to translate to Free Pascal.

Function results are returned in the accumulator, if they fit in the register. Methods calls (from
either objects or clases) have an additional invisible parameter whselifis. This parameter is the
leftmost parameter within a method call (it is therefore the last parameter passed to the method).

When the procedure or function exits, it clears the stack.

Other calling methods are available for linking with external object files and libraries, these are
summarized in tables(3). The first column lists the modifier you specify for a procedure declaration.

The second one lists the order the paramaters are pushed on the stack. The third column specifies
who is responsible for cleaning the stack: the caller or the called function. The alignment column
indicates the alignment of the parameters sent to the stack area. Finally, the fifth column indicates if
any registers are saved in the entry code of the subroutine.

More about this can be found in chaptmpage68 on linking. Information on GCC registers saved,
GCC stack alignment and general stack alignment on an operating system basis can be found in
Appendix|. Theregister modifier is currently not supported, and maps to the default calling
convention.

Furthermore, theaveregisters modifier can be used with any of the calling mechanism spec-
ifiers. Whensaveregisters is used, all registers will be saved on entry to the routine, and will
be restored upon exit. Of course, if the routine is a function, and it normally returns its retun value in
a register, that register will not be saved. Also, if the self register is used, it will also neither be saved
nor restored.

63

CHAPTER 6. CODE ISSUES

Table 6.3: Calling mechanisms in Free Pascal

Modifier Pushing order Stack cleaned by alignment registers saved
<none> Right-to-left Function default None

cdecl Right-to-left Caller GCC alignment GCC registers
interrupt Right-to-left ~ Function default all registers
pascal Left-to-right Function default None

safecall Right-to-left ~ Function default GCC registers
stdcall Right-to-left ~ Function GCC alignment GCC registers
popstack Right-to-left Caller default None

register Left-to-right Caller default None

6.4 Nested procedure and functions

When a routine is declared within the scope of a procedure or function, it is said to be nested. In this
case, an additional invisible parameter is passed to the nested routine. This additional parameter is
the frame pointer address of the parent routine. This permits the nested routine to access the local
variables and parameters of the calling routine.

The resulting stack frame after the entry code of a simple nested procedure has been executed is
shown in table §.4).

Table 6.4: Stack frame when calling a nested procedure (32-bit processors)

Offset from frame pointer What is stored

+X parameters

+8 Frame pointer of parent routine
+4 Return address

+0 Saved frame pointer

6.5 Constructor and Destructor calls

Constructor and destructors have special invisible parameters which are passed to them. These invis-
ible parameters are used internally to instantiate the objects and classes.

6.5.1 objects

The actual invisible declaration of an object constructor is as follows:
constructor init(_vmt : pointer; _self : pointer ...);

Where_vmt is a pointer to the virtual method table for this object. This value is nil if a constructor
is called within the object instance (such as calling an ihnerited constructor).

_self is either nil if the instance must be allocated dynamically (object is declared as pointer), or
the address of the object instance if the object is declared as a normal object (stored in the data area)
or if the object instance has already been allocated.

The allocated instance (if allocated via nesglf) is returned in the accumulator.

64

CHAPTER 6. CODE ISSUES

The declaration of a destructor is as follows:
destructor done(_vmt : pointer; _self : pointer ...);

Where_vmt is a pointer to the virtual method table for this object. This value is nil if a destructor is
called within the object instance (such as calling an ihnerited constructor), or if the object instance is
a variable and not a pointer.

_self isthe address of the object instance.

6.5.2 classes

The actual invisible declaration of a class constructoir is as follows:
constructor init(_vmt: pointer; flag : longint; ..);

_vmt is either nil if called from the instance or if calling an inherited constructor, otherwise it points
to the address of the virtual method table.

Whereflag is zero if the constructor is called within the object instance or with an instance qualifier
otherwise this flag is set to one.

The allocated instancs€lf) is returned in the accumulator.
The declaration of a destructor is as follows:

destructor done(_self : pointer; flag : longint ...);

_self isthe address of the object instance.

flag is zero if the destructor is called within the object instance or with an instance qualifier other-
wise this flag is set to one.

6.6 Entry and exit code

Each Pascal procedure and function begins and ends with standard epilogue and prologue code.

6.6.1 Intel 80x86 standard routine prologue / epilogue
Standard entry code for procedures and functions is as follows on the 80x86 architecture:

pushl %ebp
movl %esp,%ebp

The generated exit sequence for procedure and functions looks as follows:

leave
ret $xx

Wherexx is the total size of the pushed parameters.
To have more information on function return values take a look at se@tippage58.

65

CHAPTER 6. CODE ISSUES

6.6.2 Motorola 680x0 standard routine prologue / epilogue
Standard entry code for procedures and functions is as follows on the 680x0 architecture:

move.l a6,-(sp)
move.l sp,a6

The generated exit sequence for procedure and functions looks as follows (in the default processor
mode):

unlk a6
rtd H#XX

Wherexx is the total size of the pushed parameters.
To have more information on function return values take a look at se6tippage58.

6.7 Parameter passing

When a function or procedure is called, then the following is done by the compiler:

1. If there are any parameters to be passed to the procedure, they are pushed from right to left on
the stack.

2. If a function is called that returns a variable of tyB&ring , Set, Record , Object or
Array , then an address to store the function result in, is pushed on the stack.

3. If the called procedure or function is an object method, then the poinssito is pushed on
the stack.

4. If the procedure or function is nested in another function or procedure, then the frame pointer
of the parent procedure is pushed on the stack.

5. The return address is pushed on the stack (This is done automatically by the instruction which
calls the subroutine).

The resulting stack frame upon entering looks as in tehg).(

Table 6.5: Stack frame when calling a procedure (32-bit model)

Offset What is stored Optional?
+X parameters Yes
+12 function result Yes

+8 self Yes

+4 Return address No
+0 Frame pointer of parent procedure Yes

6.7.1 Parameter alignment

Each parameter passed to a routine is guaranteed to decrement the stack pointer by a certain minimum
amount. This behavior varies from one operating system to another. For example, passing a byte
as a value parameter to a routine could either decrement the stack pointer by 1, 2, 4 or even 8 bytes

66

CHAPTER 6. CODE ISSUES

depending on the target operating system and processor. The minimal default stack pointer decrement
value is given in Appendix.

For example, on REEBSD, all parameters passed to a routine guarantee a minimal stack decrease of
four bytes per parameter, even if the parameter actually takes less then 4 bytes to store on the stack
(such as passing a byte value parameter to the stack).

6.8 Processor limitations

Certain processors have limitations on the size of the parameters and local variables in routines. This
is shown in table.6).

Table 6.6: Maximum limits for processors

Processor Parameters Local variables
Intel 80x86 (all) 64K No limit

Motorola 68020 (default) 32K No limit
Motorola 68000 32K 32K

Furthermore, the m68k compiler, 88000 mode, limits the size of data elements to 32K (arrays,
records, objects, etc.). This restriction does not exi§8020 mode.

67

Chapter 7

Linking issues

When you only use Pascal code, and Pascal units, then you will not see much of the part that the
linker plays in creating your executable. The linker is only called when you compile a program.
When compiling units, the linker isn’t invoked.

However, there are times that linking to C libraries, or to external object files created by other compil-
ers may be necessary. The Free Pascal compiler can generate calls to a C function, and can generate
functions that can be called from C (exported functions).

7.1 Using external code and variables

In general, there are 3 things you must do to use a function that resides in an external library or object
file:

1. You must make a pascal declaration of the function or procedure you want to use.
2. You must declare the correct calling convention to use.

3. You must tell the compiler where the function resides, i.e. in what object file or what library,
so the compiler can link the necessary code in.

The same holds for variables. To access a variable that resides in an external object file, you must
declare it, and tell the compiler where to find it. The following sections attempt to explain how to do
this.

7.1.1 Declaring external functions or procedures

The first step in using external code blocks is declaring the function you want to use. Free Pascal
supports Delphi syntax, i.e. you must use thd@gernal directive. Theexternal directive
replaces, in effect, the code block of the function.

The external directive doesn’t specify a calling convention; it just tells the compiler that the code for

a procedure or function resides in an external code block. A calling convention modifier should be
declared if the external code blocks does not have the same calling conventions as Free Pascal. For
more information on the calling conventions sectt8 page63.

There exist four variants of the external directive:

1. A simple external declaration:

68

CHAPTER 7. LINKING ISSUES

Procedure ProcName (Args : TPRocArgs); external;

Theexternal directive tells the compiler that the function resides in an external block of
code. You can use this together with §$&} or{$LinkLib} directives to link to a function

or procedure in a library or external object file. Object files are looked for in the object search
path (set byFo) and libraries are searched for in the linker path (setfy).

2. You can give theexternal directive a library name as an argument:
Procedure ProcName (Args : TPRocArgs); external 'Name’;

This tells the compiler that the procedure resides in a library with ribiaiee’ . This method
is equivalent to the following:

Procedure ProcName (Args : TPRocArgs);external;
{$LinkLib 'Name’}

3. Theexternal can also be used with two arguments:

Procedure ProcName (Args : TPRocArgs); external 'Name’
name 'OtherProcName’;

This has the same meaning as the previous declaration, only the compiler will use the name
‘OtherProcName’ when linking to the library. This can be used to give different names to
procedures and functions in an external library. The name of the routine is case-sensitive and
should match exactly the name of the routine in the object file.

This method is equivalent to the following code:

Procedure OtherProcName (Args : TProcArgs); external;
{$LinkLib 'Name’}

Procedure ProcName (Args : TPRoOCArgs);

begin
OtherProcName (Args);
end;

4. Lastly, onder WNDOWS andos/2, there is a fourth possibility to specify an external function:
In .DLL files, functions also have a unique number (their index). It is possible to refer to these
fuctions using their index:

Procedure ProcName (Args : TPRocArgs); external 'Name’' Index Somelndex;

This tells the compiler that the proceduUPeocName resides in a dynamic link library, with
index Somelndex.

Remark: Note that this is ONLY available under Wbows andos/2.

7.1.2 Declaring external variables

Some libaries or code blocks have variables which they export. You can access these variables much
in the same way as external functions. To access an external variable, you declare it as follows:

Var
MyVar : MyType; external name ’varname’;

69

CHAPTER 7. LINKING ISSUES

The effect of this declaration is twofold:

1. No space is allocated for this variable.

2. The name of the variable used in the assembler codarisame . This is a case sensitive
name, so you must be careful.

The variable will be accessible with it's declared name,MgVar in this case.
A second possibility is the declaration:

Var
varname : MyType; cvar; external;

The effect of this declaration is twofold as in the previous case:

1. Theexternal modifier ensures that no space is allocated for this variable.

2. Thecvar modifier tells the compiler that the name of the variable used in the assembler code
is exactly as specified in the declaration. This is a case sensitive name, so you must be careful.

The first possibility allows you to change the name of the external variable for internal use.
As an example, let’s look at the following C file (extvar.c):

/*

Declare a variable, allocate storage

*/

int extvar = 12;

And the following program (irextdemo.pp):
Program ExtDemo;
{$L extvar.o}
Var { Case sensitive declaration !! }
extvar : longint; cvar;external,
I : longint; external name ’extvar’
begin
{ Extvar can be used case insensitive !! }
Writeln ('Variable “extvar” has value: ' ExtVar);
Writeln ('Variable "1” has value: ",i);
end.
Compiling the C file, and the pascal program:

gcc -c -0 extvar.o extvar.c
ppc386 -Sv extdemo

Will produce a progranextdemo which will print

Variable 'extvar’ has value: 12
Variable T’ has value: 12

on your screen.

70

CHAPTER 7. LINKING ISSUES

7.1.3 Declaring the calling convention modifier

To make sure that all parameters are correctly passed to the external routines, you should declare it
with the correct calling convention modifier. When linking with code blocks compiled with standard

C compilers (such as GCC), tleelecl modifier should be used so as to indicate that the external
routine uses C type calling conventions. For more information on the supported calling conventions,
section6.3, page63.

As might expected, external variable declarations do not require any calling convention modifier.

7.1.4 Declaring the external object code

Linking to an object file

Having declared the external function or variable that resides in an object file, you can use it as if it
was defined in your own program or unit. To produce an executable, you must still link the object
file in. This can be done with thgL file.o} directive.

This will cause the linker to link in the object fillle.0. On most systems, this filename is case
sensitive. The object file is first searched in the current directory, and then the directories specified
by the-Fo command line.

You cannot specify libraries in this way, it is for object files only.

Here we present an example. Consider that you have some assembly routine which uses the C calling
convention that calculates the nth Fibonacci number:

ext
.align 4
.globl Fibonacci
.type Fibonacci,@function
Fibonacci:
pushl %ebp
movl %esp,%ebp
movl 8(%ebp),%edx
xorl %ecx,%ecx
xorl %eax,%eax
movl $1,%ebx
incl %edx
loop:
decl %edx
je endloop
movl %ecx,%eax
addl %ebx,%eax
movl %ebx,%ecx
movl %eax,%ebx
jmp loop
endloop:
movl %ebp,%esp
popl %ebp
ret

Then you can call this function with the following Pascal Program:
Program FibonacciDemo;

var i : longint;

71

CHAPTER 7. LINKING ISSUES

Function Fibonacci (L : longint):longint;cdecl;external,
{$L fib.o}
begin
For I:=1 to 40 do
writeln ('Fib(’,i,”) : ’,Fibonacci (i));
end.

With just two commands, this can be made into a program:

as -o fib.o fib.s
ppc386 fibo.pp

This example supposes that you have your assembler routiitesnand your Pascal program in
fibo.pp.

Linking to a library

To link your program to a library, the procedure depends on how you declared the external procedure.
In case you used the following syntax to declare your procedure:

Procedure ProcName (Args : TPRocArgs); external 'Name’;
You don'’t need to take additional steps to link your file in, the compiler will do all that is needed

for you. On WINDOws it will link to name.dll, onLINUX and mostuNIx’es your program will be
linked to librarylibname, which can be a static or dynamic library.

In case you used
Procedure ProcName (Args : TPRocArgs); external;
You still need to explicity link to the library. This can be done in 2 ways:

1. You can tell the compiler in the source file what library to link to using {BkinkLib
'Name'} directive:

{$LinkLib 'gpm’}
This will link to the gpm library. OnunNix systems (such asNux), you must not specify the

extension or 'lib’ prefix of the library. The compiler takes care of that. On other systems (such
as WINDOwS, you need to specify the full name.

2. You can also tell the compiler on the command-line to link in a library: Fheption can be
used for that. For example

ppc386 -k'-lgpm’ myprog.pp
Is equivalent to the above method, and tells the linker to link ta@yfira library.

As an example; consider the following program:

72

CHAPTER 7. LINKING ISSUES

program printlength;
{$linklib c} { Case sensitive }

{ Declaration for the standard C function strlen }
Function strlen (P : pchar) : longint; cdecl;external,

begin

Writeln (strlen('Programming is easy !));
end.
This program can be compiled with:

ppc386 prlen.pp

Supposing, of course, that the program source residedéan.pp.

To use functions in C that have a variable number of arguments, you must compile your unit or
program inobjfpc mode orDelphi mode, and use th&rray of const argument, as in the
following example:

program testaocc;

{$mode objfpc}

Const
P : Pchar
= ‘example’;
F : Pchar

= 'This %s uses printf to print numbers (%d) and strings.'#10;
procedure printf(fm: pchar;args: array of const);cdecl;external 'c’;
begin

printf(F,[P,123]);
end.

The output of this program looks like this:

This example uses printf to print numbers (123) and strings.

7.2 Making libraries

Free Pascal supports making shared or static libraries in a straightforward and easy manner. If you
want to make static libraries for other Free Pascal programmers, you just need to provide a command
line switch. To make shared libraries, refer to the chapfepagel08. If you want C programmers

to be able to use your code as well, you will need to adapt your code a little. This process is described
first.

7.2.1 Exporting functions
When exporting functions from a library, there are 2 things you must take in account:

73

CHAPTER 7. LINKING ISSUES

1. Calling conventions.

2. Naming scheme.

The calling conventions are controlled by the modifisdecl , popstack , pascal ,safecall
stdcall andregister . See sectiol.3, page63 for more information on the different kinds of
calling scheme.

The naming conventions can be controlled by 2 modifiers in the case of static libraries:

e cdecl

e alias

For more information on how these different modifiers change the name mangling of the routine
section6.2, page60.

Remark: If you use in your unit functions that are in other units, or system functions, then the C program will
need to link in the object files from these units too.

7.2.2 Exporting variables

Similarly as when you export functions, you can export variables. When exportig variables, one
should only consider the names of the variables. To declare a variable that should be used by a C
program, one declares it with tlowar modifier:

Var MyVar : MyTpe; cvar,

This will tell the compiler that the assembler name of the variable (the one which is used by C
programs) should be exactly as specified in the declaration, i.e., case sensitive.

It is not allowed to declare multiple variables@gr in one statement, i.e. the following code will

produce an error:

var Z1,Z2 : longint;cvar;

7.2.3 Compiling libraries

Once you have your (adapted) code, with exported and other functions, you can compile your unit,
and tell the compiler to make it into a library. The compiler will simply compile your unit, and
perform the necessary steps to transform it insbedic ~ or shared (dynamic) library.

You can do this as follows, for a dynamic library:
ppc386 -CD myunit
On uNIX systems, such asNnux, this will leave you with a fildibmyunit.so. On WINDOWS and

09/2, this will leave you withmyunit.dll. An easier way to create shared libraries is to use the
library keyword. For more information on creating shared libraries, chdgragel08

If you want a static library, you can do
ppc386 -CS myunit

This will leave you withlibmyunit.a and a filemyunit.ppu. Themyunit.ppu is the unit file needed
by the Free Pascal compiler.

74

CHAPTER 7. LINKING ISSUES

The resulting files are then libraries. To make static libraries, you neadfib or ar program on
your system. Itis standard on mastix systems, and is provided with tigec compiler undepos.
For the dos distribution, a copy of ar is included in the gifeuutils.zip.

BEWAREThis command doesn’t include anything but the current unit in the library. Other units are
left out, so if you use code from other units, you must deploy them together with your library.

7.2.4 Unit searching strategy
When you compile a unit, the compiler will by default always look for unit files.

To be able to differentiate between units that have been compiled as static or dynamic libraries, there
are 2 switches:

-XD: This will define the symbdFPC_LINK_DYNAMIC
-XS: This will define the symbdFPC_LINK_STATIC

Definition of one symbol will automatically undefine the other.

These two switches can be used in conjunction with the configuratioipéilefg. The existence of
one of these symbols can be used to decide which unit search path to set. For examiplexon

Set unit paths

#IFDEF FPC_LINK_STATIC
-Up/usr/lib/fpc/linuxunits/staticunits
#ENDIF

#IFDEF FPC_LINK_DYNAMIC
-Upl/ust/lib/fpc/linuxunits/sharedunits
#ENDIF

With such a configuration file, the compiler will look for it’s units in different directories, depending
on whetherXD or -XS is used.

7.3 Using smart linking

You can compile your units using smart linking. When you use smartlinking, the compiler creates a
series of code blocks that are as small as possible, i.e. a code block will contain only the code for
one procedure or function.

When you compile a program that uses a smart-linked unit, the compiler will only link in the code
that you actually need, and will leave out all other code. This will result in a smaller binary, which is
loaded in memory faster, thus speeding up execution.

To enable smartlinking, one can give the smartlink option on the commandd@me:or one can put
the {$SMARTLINK ON} directive in the unit file:

Unit Testunit

{SMARTLINK ON}
Interface

Smartlinking will slow down the compilation process, especially for large units.

75

CHAPTER 7. LINKING ISSUES

When a unitfoo.pp is smartlinked, the name of the codefile is changdibfoo.a.

Technically speaking, the compiler makes small assembler files for each procedure and function in
the unit, as well as for all global defined variables (whether they're in the interface section or not). It
then assembles all these small files, and asés collect the resulting object files in one archive.

Smartlinking and the creation of shared (or dynamic) libraries are mutually exclusive, that is, if you
turn on smartlinking, then the creation of shared libraries is turned of. The creation of static libraries
is still possible. The reason for this is that it has little sense in making a smartlinked dynamical
library. The whole shared library is loaded into memory anyway by the dynamic linker (or the
operating system), so there would be no gain in size by making it smartlinked.

76

Chapter 8

Memory issues

8.1 The memory model.

The Free Pascal compiler issues 32-bit or 64-bit code. This has several consequences:

e You need a 32-bit or 64-bit processor to run the generated code. The compiler functions on a
286 when you compile it using Turbo Pascal, but the generated programs cannot be assembled
or executed.

e You don't need to bother with segment selectors. Memory can be addressed using a single
32-bit (on 32-bit processors) or 64-bit (on 64-bit processors with 64-bit addressing) pointer.
The amount of memory is limited only by the available amount of (virtual) memory on your
machine.

e The structures you define are unlimited in size. Arrays can be as long as you want. You can
request memory blocks from any size.

The fact that 16-bit code is no longer used, means that some of the older Turbo Pascal constructs and
functions are obsolete. The following is a list of functions which shouldn’t be used anymore:

Seg() : Returned the segment of a memory address. Since segments have no more meaning, zero is
returned in the Free Pascal run-time library implementatioBegf.

Ofs() : Returned the offset of a memory address. Since segments have no more meaning, the com-
plete address is returned in the Free Pascal implementation of this function. This has as a
consequence that the return typdéoisgint orint64 instead ofWord.

Cseg(), Dseg(): Returned, respectively, the code and data segments of your program. This returns
zero in the Free Pascal implementation of the system unit, since both code and data are in the
same memory space.

Ptr : Accepted a segment and offset from an address, and would return a pointer to this address.
This has been changed in the run-time library, it now simply returns the offset.

memw and mem : These arrays gave access to tiess memory. Free Pascal supports them on the
go32v2 platform, they are mapped irm@s memory space. You need tige32 unit for this.
On other platforms, they amot supported

You shouldn’t use these functions, since they are very non-portable, they're specific tmd the

80x86 processor. The Free Pascal compiler is designed to be portable to other platforms, so you
should keep your code as portable as possible, and not system specific. That is, unless you're writing
some driver units, of course.

77

CHAPTER 8. MEMORY ISSUES

8.2 Data formats

This section gives information on the storage space occupied by the different possible types in Free
Pascal. Information on internal alignment will also be given.

8.2.1 integer types

The storage size of the default integer types are givéteiierence guiddn the case of user defined-
types, the storage space occupied depends on the bounds of the type:

¢ If both bounds are within range -128..127, the variable is stored as a shortint (signed 8-bit
guantity).

¢ If both bounds are within the range 0..255, the variable is stored as a byte (unsigned 8-bit
guantity).

¢ If both bounds are within the range -32768..32767, the variable is stored as a smallint (signed
16-bit quantity).

¢ If both bounds are within the range 0..65535, the variable is stored as a word (unsigned 16-bit
quantity)

¢ If both bounds are within the range 0..4294967295, the variable is stored as a longword (un-
signed 32-bit quantity).

e Otherwise the variable is stored as a longint (signed 32-bit quantity).

8.2.2 char types
A char , or a subrange of the char type is stored as a byte.

8.2.3 boolean types
Theboolean type is stored as a byte and can take a valueusf or false

A ByteBool is stored as a byte,WordBool type is stored as a word, andangbool s stored
as a longint.

8.2.4 enumeration types

By default all enumerations are stored as a longword (4 bytes), which is equivalent to specifying the
{$z24} ,{$PACKENUM 4}or {$PACKENUM DEFAULT3%witches.
This default behavior can be changed by compiler switches, and by the compiler mode.

In thetp compiler mode, or while th§$Z1} or {$PACKENUM 1}switches are in effect, the
storage space used is shown in tal@d)

When the{$Z22} or {SPACKENUM 2}switches are in effect, the value is stored on 2 bytes (word),
if the enumeration has less or equal then 65535 elements, otherwise, the enumeration value is stored
as a 4 byte value (longword).

78

file:../ref/ref.html

CHAPTER 8. MEMORY ISSUES

Table 8.1: Enumeration storage tpr mode

Of Elements in Enum. Storage space used

0..255 byte (1 byte)
256..65535 word (2 bytes)
> 65535 longword (4 bytes)

8.2.5 floating point types

Floating point type sizes and mapping vary from one processor to another. Except for the Intel
80x86 architecture, thextended type maps to the IEEE double type if a hardware floating point
COprocessor is present.

Table 8.2: Processor mapping of real type

Processor Real type mapping
Intel 80x86 double
Motorola 680x0 (with {$E-} switch) double
Motorola 680x0 (with {$E+} switch) single

Floating point types have a storage binary format divided into three distinct fields : the mantissa, the
exponent and the sign bit which stores the sign of the floating point value.

single

Thesingle type occupies 4 bytes of storage space, and its memory structure is the same as the
IEEE-754 single type. This type is the only type which is guaranteed to be available on all platforms
(either emulated via software or directly via hardware).

The memory format of theingle format looks like what is shown in figur& ().

Figure 8.1: The single format

width in bits
1 2 23
5 exponent martizsa
m=b I=b

79

CHAPTER 8. MEMORY ISSUES

double

The double type occupies 8 bytes of storage space, and its memory structure is the same as the
IEEE-754 double type.

The memory format of thdouble format looks like like what is shown in figur&(2).

Figure 8.2: The double format

width in bit=
1 1A 52
= exponent mantiz=a
Ish msh

On processors which do not support co-processor operations (and which have the {$E+} switch), the
double type does not exist.

extended

For Intel 80x86 processors, tleatended type has takes up 10 bytes of memory space. For more
information on the extended type consult the Intel Programmer’s reference.

For all other processors which support floating point operationssttended type is a nickname
for the type which supports the most precision, this is usuallydihible type. On processors
which do not support co-processor operations (and which have the {$E+} switch)xtbeded
type usually maps to theingle type.

comp
For Intel 80x86 processors, thkemp type contains a 63-bit integral value, and a sign bit (in the MSB

position). Thecomp type takes up 8 bytes of storage space.
On other processors, tlvemp type is not supported.

real

Contrary to Turbo Pascal, where tteal type had a special internal format, under Free Pascal the
real type simply maps to one of the other real types. It maps talthéle type on processors
which support floating point operations, while it maps to ¢irggle type on processors which do
not support floating point operations in hardware. See t&R for more information on this.

8.2.6 pointer types

A pointer type is stored as a longword (unsigned 32-bit value) on 32-bit processors, and is stored
as a 64-bit unsigned valtien 64-bit processors.

1this is actually theqword type, which is not supported in Free Pascal v1.0

80

CHAPTER 8. MEMORY ISSUES

8.2.7 string types

ansistring types

The ansistring is a dynamically allocated string which has no length limitation. When the string is
no longer being referenced (its reference count reaches zero), its memory is automatically freed.

If the ansistring is a constant, then its reference count will be equal to -1, indicating that it should
never be freed. The structure in memory for an ansistring is shown in &8je (

Table 8.3: AnsiString memory structure (32-bit model)

Offset Contains
-12 Longint with maximum string size.
-8 Longint with actual string size.
-4 Longint with reference count.
0 Actual array ofchar , null-terminated.

shortstring types

A shortstring occupies as many bytes as its maximum length plus one. The first byte contains the
current dynamic length of the string. The following bytes contain the actual characters (of type
char) of the string. The maximum size of a short string is the length byte followed by 255 characters.

widestring types

The widestring (composed of unicode characters) is not supported in Free Pascal v1.0.

8.2.8 set types

A set is stored as an array of bits, where each bit indicates if the element is in the set or excluded
from the set. The maximum number of elements in a set is 256.

If a set has less than 32 elements, it is coded as an unsigned 32-bit value. Otherwise it is coded as a
8 element array of 32-bit unsigned values (longword) (hence a size of 256 bytes).

The longword number of a specific eleménis given by :
LongwordNumber = (E div 32);

and the bit number within that 32-bit value is given by:

BitNumber = (E mod 32);

8.2.9 array types

An array is stored as a contiguous sequence of variables of the components of the array. The compo-
nents with the lowest indexes are stored firstin memory. No alignment is done between each element
of the array. A multi-dimensional array is stored with the rightmost dimension increasing first.

81

CHAPTER 8. MEMORY ISSUES

8.2.10 record types

Each field of a record are stored in a contigous sequence of variables, where the first field is stored
at the lowest address in memory. In case of variant fields in a record, each variant starts at the same
address in memory. Fields of record are usually aligned, unlegsattieed directive is specified

when declaring the record type. For more information on field alignment, consult s8@i@page

85.

8.2.11 object types

Objects are stored in memory just as ordinary records with an extra field: a pointer to the Virtual
Method Table (VMT). This field is stored first, and all fields in the object are stored in the order
they are declared (with possible alignment of field addresses, unless the object was declared as being
packed).

This field is initialized by the call to the object@Gonstructor method. If thenew operator was
used to call the constructor, the data fields of the object will be stored in heap memory, otherwise
they will directly be stored in the data section of the final executable.

If an object doesn't have virtual methods, no pointer to a VMT is inserted.
The memory allocated looks as in tab&4).

Table 8.4: Object memory layout (32-bit model)

Offset What
+0 Pointer to VMT (optional).
+4 Data. All fields in the order they've been declared.

The Virtual Method Table (VMT) for each object type consists of 2 check fields (containing the size
of the data), a pointer to the object’s ancestor's VNIl (if there is no ancestor), and then the
pointers to all virtual methods. The VMT layout is illustrated in talde&). The VMT is constructed

by the compiler.

Table 8.5: Object Virtual Method Table memory layout (32-bit model)

Offset What

+0 Size of object type data

+4 Minus the size of object type data. Enables determining of valid VMT pointers.
+8 Pointer to ancestor VMTNIl if no ancestor available.

+12 Pointers to the virtual methods.

8.2.12 class types

Just like objects, classes are stored in memory just as ordinary records with an extra field: a pointer
to the Virtual Method Table (VMT). This field is stored first, and all fields in the class are stored in
the order they are declared.

Contrary to objects, all data fields of a class are always stored in heap memory.
The memory allocated looks as in tab&6).

82

CHAPTER 8. MEMORY ISSUES

Table 8.6: Class memory layout (32-bit model)

Offset What
+0 Pointer to VMT.
+4 Data. All fields in the order they've been declared.

The Virtual Method Table (VMT) of each class consists of several fields, which are used for runtime
type information. The VMT layout is illustrated in tabl8.7). The VMT is constructed by the
compiler.

Table 8.7: Class Virtual Method Table memory layout (32-bit model)

Offset What

+0 Size of object type data

+4 Minus the size of object type data. Enables determining of valid VMT pointers.
+8 Pointer to ancestor VMTNIl if no ancestor available.

+12 Pointer to the class hame (stored atartstring).

+16 Pointer to the dynamic method table (usingssage with integers).
+20 Pointer to the method definition table.

+24 Pointer to the field definition table.

+28 Pointer to type information table.

+32 Pointer to instance initialization table.

+36 Reserved.

+40 Pointer to the interface table.

+44 Pointer to the dynamic method table (usingssage with strings).
+48 Pointer to th®estroy destructor.

+52 Pointer to thélewlnstance method.

+56 Pointer to théreelnstance method.

+60 Pointer to th&afeCallException method.

+64 Pointer to théefaultHandler method.

+68 Pointer to théfterConstruction method.

+72 Pointer to th&eforeDestruction method.

+76 Pointer to th®efaultHandlerStr method.

+80 Pointers to other virtual methods.

8.2.13 file types
File types are represented as records. Typed files and untyped files are represented as a fixed record:

filerec = packed record

handle . longint;
mode . longint;
recsize . longint;

_private : array[1..32] of byte;

userdata : array[1..16] of byte;

name . array[0..255] of char;
End;

83

CHAPTER 8. MEMORY ISSUES

Text files are described using the following record:

TextBuf = array[0..255] of char;
textrec = packed record

handle . longint;
mode . longint;
bufsize . longint;

_private : longint;

bufpos . longint;
bufend : longint;
bufptr . Mextbuf;

openfunc : pointer;
inoutfunc : pointer;
flushfunc : pointer;
closefunc : pointer;
userdata : array[1..16] of byte;

name . array[0..255] of char;
buffer . textbuf;
End;

handle The handle field returns the file handle (if the file is opened), as returned by the operating
system.

mode The mode field can take one of several values. Wherfibhidosed , then the file is closed,
and thehandle field is invalid. When the value is equal fminput , it indicates that the
file is opened for read only acces$moutput indicates write only access, and tineinout
indicates read-write access to the file.

name Thename field is a null terminated character string representing the name of the file.

userdata Theuserdata field is never used by Free Pascal, and can be used for special purposes
by software developpers.

8.2.14 procedural types
A procedural type is stored as a generic pointer, which stores the address of the routine.

A procedural type to a normal procedure or function is stored as a generic pointer, which stores the
address of the entry point of the routine.

In the case of a method procedural type, the storage consists of two pointers, the first being a pointer
to the entry point of the method, and the second one being a poirgelfto (the object instance).

8.3 Data alignment

8.3.1 Typed constants and variable alignment

All static data (variables and typed constants) which are greater than a byte are usually aligned on
a power of two boundary. This alignment applies only to the start address of the variables, and not
the alignment of fields within structures or objects for example. For more information on structured
alignment, sectioB.3.2 page85. The alignment is similar across the different target process$ors.

2The Intel 80x86 version does not align data in the case of constant strings, constant sets, constant floating point values
amd global variables. This will be fixed in the version 1.1 release.

84

CHAPTER 8. MEMORY ISSUES

Table 8.8: Data alignment

Data size (bytes) Alignment (small size) Alignment (fast)

1 1 1
2-3 2 2
4-7 2 4
8+ 2 4

The alignment columns indicates the address alignment of the variable, i.e the start address of the
variable will be aligned on that boundary. The small size alignment is valid when the code generated
should be optimized for size@g compiler option) and not speed, otherwise and by default, the fast
alignment is used to align the data.

8.3.2 Structured types alignment

By default all elements in a structure are aligned to a 2 byte boundary, unleBBAGKRECORDS
directive orpacked modifier is used to align the data in another way. For exampexard or
object having a 1 byte element, will have its size rounded up to 2, so the size of the structure will
actually be 2 bytes.

8.4 The heap

The heap is used to store all dynamic variables, and to store class instances. The interface to the
heap is the same as in Turbo Pascal, although the effects are maybe not the same. On top of that, the
Free Pascal run-time library has some extra possibilities, not available in Turbo Pascal. These extra

possibilities are explained in the next subsections.

8.4.1 Heap allocation strategy

The heap is a memory structure which is organized as a stack. The heap bottom is stored in the
variableHeapOrg. Initially the heap pointerfeapPtr) points to the bottom of the heap. When

a variable is allocated on the hedgeapPtr is incremented by the size of the allocated memory
block. This has the effect of stacking dynamic variables on top of each other.

Each time a block is allocated, its size is normalized to have a granularity of 16 bytes.

WhenDispose or FreeMem is called to dispose of a memory block which is not on the top of

the heap, the heap becomes fragmented. The deallocation routines also add the freed blocks to the
freelist which is actually a linked list of free blocks. Furthermore, if the deallocated block was
less then 8K in size, the free list cache is also updated.

The free list cache is actually a cache of free heap blocks which have specific lengths (the adjusted
block size divided by 16 gives the index into the free list cache table). It is faster to access then
searching through the entifieselist

The format of an entry in thireelist is as follows:

PFreeRecord = "TFreeRecord;
TFreeRecord = record

Size : longint;

Next : PFreeRecord;

Prev : PFreeRecord;

85

CHAPTER 8. MEMORY ISSUES

end;

TheNext field points to the next free block, while tii¥ev field points to the previous free block.
The algorithm for allocating memory is as follows:

1. The size of the block to allocate is adjusted to a 16 byte granularity.

2. The cached free list is searched to find a free block of the specified size or bigger size, if so it
is allocated and the routine exits.

3. Thefreelist is searched to find a free block of the specified size or of bigger size, if so it
is allocated and the routine exits.

4. If not found in thefreelist the heap is grown to allocate the specified memory, and the
routine exits.

5. If the heap cannot be grown internally anymore, the runtime library generates a runtime error
203.

8.4.2 The heap grows
By default,HeapError points to theGrowHeap function, which tries to increase the heap.

The GrowHeap function issues a system call to try to increase the size of the memory available to
your program. It first tries to increase memory in a 256Kb chunk if the size to allocate is less than
256Kb, or 1024K otherwise. If this fails, it tries to increase the heap by the amount you requested
from the heap.

If the call toGrowHeap was successful, then the needed memory will be allocated.

If the call toGrowHeap fails, the value returned depends on the value oR&irnNillfGrowHeapFails
global variable. This is summarized in tab&9).

Table 8.9: ReturnNillfGrowHeapFails value

ReturnNilGrowHeapFails Default memory
value manager action
FALSE (The default) Runtime error 203 generated
TRUE GetMem ReallocMem andNewreturnsnil
ReturnNillfGrowHeapFails can be set to change the behavior of the default memory manager

error handler.

8.4.3 Debugging the heap

Free Pascal provides a unit that allows you to trace allocation and deallocation of heap memory:
heaptrc.

If you specify the-gh switch on the command-line, or if you inclutkeaptrc as the first unit in
your uses clause, the memory manager will trace what is allocated and deallocated, and on exit of
your program, a summary will be sent to standard output.

More information on using théeaptrc mechanism can be found in thésers guideand Unit
reference

86

file:../user/user.html
file:../units/units.html
file:../units/units.html

CHAPTER 8. MEMORY ISSUES

8.4.4 Writing your own memory manager

Free Pascal allows you to write and use your own memory manager. The standard fuBetidesn
FreeMem, ReallocMem etc. use a special record in tegstem unit to do the actual memory
management. Thgystem unit initializes this record with theystem unit's own memory manager,
but you can read and set this record using@sMemoryManager andSetMemoryManager
calls:

procedure GetMemoryManager(var MemMgr: TMemoryManager);
procedure SetMemoryManager(const MemMgr: TMemoryManager);

theTMemoryManager record is defined as follows:

TMemoryManager = record

Getmem . Function(Size:Longint):Pointer;
Freemem : Function(var p:pointer):Longint;
FreememSize : Function(var p:pointer;Size:Longint):Longint;
AllocMem . Function(Size:longint):Pointer;
ReAllocMem : Function(var p:pointer;Size:longint):Pointer;
MemSize . function(p:pointer):Longint;
GetHeapStatus : function :THeapStatus;
GetFPCHeapStatus . function :TFPCHeapStatus;

end;

As you can see, the elements of this record are procedural variablesy3teen unit does nothing
but call these various variables when you allocate or deallocate memory.

Each of these functions corresponds to the corresponding call isytem unit. We'll describe
each one of them:

Getmem This function allocates a new block on the heap. The block shoulsizz bytes long.
The return value is a pointer to the newly allocated block.

Freemem should release a previously allocated block. The poiRfgwints to a previously allocated
block. The Memory manager should implement a mechanism to determine what the size of
the memory block i$ The return value is optional, and can be used to return the size of the
freed memory.

FreememSizeThis function should release the memory pointed té&*b¥he argumengize is the
expected size of the memory block pointed to by P. This should be disregarded, but can be used
to check the behaviour of the program.

AllocMem Is the same as getmem, only the allocated memory should be filled with zeroes before
the call returns.

ReAllocMem Should allocate a memory blo&ize bytes large, and should fill it with the contents
of the memory block pointed to by, truncating this to the new size of needed. After that, the
memory pointed to by P may be deallocated. The return value is a pointer to the new memory
block. Note thaf may beNil , in which case the behaviour is equivalen@etMem

MemSize should return the total amount of memory available for allocation. This function may
return zero if the memory manager does not allow to determine this information.

GetHeapStatus should return arHeapStatus record with the status of the memory manager.
This record should be filled with Delphi-compliant values.

3By storing it's size at a negative offset for instance.

87

CHAPTER 8. MEMORY ISSUES

GetHeapStatus should return #FPCHeapStatus record with the status of the memory manager.
This record should be filled with FPC-Compliant values.

To implement your own memory manager, it is sufficient to construct such a record and to issue a
call to SetMemoryManager .

To avoid conflicts with the system memory manager, setting the memory manager should happen as
soon as possible in the initialization of your program, i.e. before any cghtimem is processed.

This means in practice that the unit implementing the memory manager should be the first in the
uses clause of your program or library, since it will then be initialized before all other units (except
of thesystem unit)

This also means that it is not possible to useltbaptrc unit in combination with a custom memory
manager, since theeaptrc unit uses the system memory manager to do all it's allocation. Putting the
heaptrc unit after the unit implementing the memory manager would overwrite the memory manager
record installed by the custom memory manager, and vice versa.

The following unit shows a straightforward implementation of a custom memory manager using the
memory manager of th€library. It is distributed as a package with Free Pascal.

unit cmem;
{$mode obijfpc}
interface

Function Malloc (Size : Longint) : Pointer;cdecl;
external 'c’ name ’'malloc’;
Procedure Free (P : pointer); cdecl; external 'c’ name ’free’;
Procedure FreeMem (P : Pointer); cdecl; external 'c’ name ’free’;
function ReAlloc (P : Pointer; Size : longint) : pointer; cdecl;
external 'c’ name ’realloc’;
Function CAlloc (unitSize,UnitCount : Longint) : pointer;cdecl;
external 'c’ name ’calloc’;

implementation
Function CGetMem (Size : Longint) : Pointer;
begin

result:=Malloc(Size);
end;
Function CFreeMem (Var P : pointer) : Longint;
begin

Free(P);

Result:=0;
end;
Function CFreeMemSize(var p:pointer;Size:Longint):Longint;
begin

Result:=CFreeMem(P);
end;

88

CHAPTER 8. MEMORY ISSUES

Function CAllocMem(Size : Longint) : Pointer;

begin
Result:=calloc(Size,1);
end;

Function CReAllocMem (var p:pointer;Size:longint):Pointer;

begin
Result:=realloc(p,size);
end;

Function CMemSize (p:pointer): Longint;

begin
Result:=0;
end;

Const
CMemoryManager : TMemoryManager =
(

GetMem : CGetmem;
FreeMem : CFreeMem;
FreememSize : CFreememSize;
AllocMem : CAllocMem;
ReallocMem : CReAllocMem;
MemSize : CMemSize;
GetHeapStatus : Nil;
GetFPCHeapStatus : Nil;

Var
OldMemoryManager : TMemoryManager;

Initialization
GetMemoryManager (OldMemoryManager);
SetMemoryManager (CmemoryManager);

Finalization
SetMemoryManager (OldMemoryManager);
end.

8.5 Usingbos memory under the Go32 extender

Because Free Pascal ibosis a 32 bit compiler, and useseps extender, accessing DOS memory
isn’t trivial. What follows is an attempt to an explanation of how to access andaoser real mode
memory.

In Proteced Modememory is accessed throu§electorsaandOffsets You can think of Selectors as
the protected mode equivalents of segments.

4Thanks for the explanation to Thomas Schatzl (E-ntailh_at_work@geocities.com)

89

CHAPTER 8. MEMORY ISSUES

In Free Pascal, a pointer is an offset into B@selector, which points to the Data of your program.

To access the (real modeps memory, somehow you need a selector that points tothemem-
ory. Thego32 unit provides you with such a selector: TB®sMemSelector variable, as it is
conveniently called.

You can also allocate memory o Ss memory space, using thigobal _dos_alloc function
of thego32 unit. This function will allocate memory in a place wheres sees it.

As an example, here is a function that returns memory in real modend returns a selector:offset
pair for it.

procedure dosalloc(var selector : word;
var segment : word;
size : longint);

var result : longint;

begin
result := global_dos_alloc(size);
selector := word(result);
segment := word(result shr 16);
end;

(You need to free this memory using thebal_dos_free function.)

You can access any place in memory using a selector. You can get a selector uallugtite Idt descriptor
function, and then let this selector point to the physical memory you want usisgtheegment_base_address
function, and set its length usirsgt_segment_limit function. You can manipulate the memory

pointed to by the selector using the functions of the GO32 unit. For instance wibghéllchar

function. After using the selector, you must free it again usindréne Idt_selector function.

More information on all this can be found in thinit referencethe chapter on thgo32 unit.

90

file:../units/units.html

Chapter 9

Resource strings

9.1 Introduction

Resource strings primarily exist to make internationalization of applications easier, by introducing a
language construct that provides a uniform way of handling constant strings.

Most applications communicate with the user through some messages on the graphical screen or
console. Storing these messages in special constants allows to store them in a uniform way in separate
files, which can be used for translation. A programmers interface exists to manipulate the actual
values of the constant strings at runtime, and a utility tool comes with the Free Pascal compiler to
convert the resource string files to whatever format is wanted by the programmer. Both these things
are discussed in the following sections.

9.2 The resource string file

When a unit is compiled that containsesourcestring section, the compiler does 2 things:

1. It generates a table that contains the value of the strings as it is declared in the sources.

2. It generates aesource string filehat contains the names of all strings, together with their
declared values.

This approach has 2 advantages: first of all, the value of the string is always present in the pro-
gram. If the programmer doesn’t care to translate the strings, the default values are always present
in the binary. This also avoids having to provide a file containing the strings. Secondly, having all
strings together in a compiler generated file ensures that all strings are together (you can have mul-
tiple resourcestring sections in 1 unit or program) and having this file in a fixed format, allows the
programmer to choose his way of internationalization.

For each unit that is compiled and that contains a resourcestring section, the compiler generates a file
that has the name of the unit, and an extensisin The format of this file is as follows:

1. An empty line.

2. Aline starting with a hash sigr#f and the hash value of the string, preceded by thehash
value = .

3. Athird line, containing the name of the resource string in the fotmahame.constantname ,
all lowercase, followed by an equal sign, and the string value, in a format equal to the pascal

91

CHAPTER 9. RESOURCE STRINGS

representation of this string. The line may be continued on the next line, in that case it reads
as a pascal string expression with a plus sign in it.

4. Another empty line.

If the unit contains n@esourcestring section, no file is generated.
For example, the following unit:

unit rsdemo;

{$mode delphi}
{$H+}

interface
resourcestring

First = 'First’;
Second = 'A Second very long string that should cover more than 1 line’;

implementation
end.

Will result in the following resource string file:

hash value = 5048740
rsdemo.first="First’

hash value = 171989989
rsdemo.second="A Second very long string that should cover more than 1 li'+
ne

The hash value is calculated with the functidash. It is present in th@bjpas unit. The value is
the same value that the GNU gettext mechanism uses. It is in no way unique, and can only be used
to speed up searches.

Therstconv utility that comes with the Free Pascal compiler allows to manipulate these resource
string files. At the moment, it can only be used to maljeddfile that can be fed to the GNihsgfmt
program. If someone wishes to have another format (Win32 resource files spring to mind), one can
enhance thestconv program so it can generate other types of files as well. GNU gettext was chosen
because it is available on all platforms, and is already widely used ibtite and free software
community. Since the Free Pascal team doesn’t want to restrict the use of resource strings, the
format was chosen to provide a neutral method, not restricted to any tool.

If you use resource strings in your units, and you want people to be able to translate the strings, you
must provide the resource string file. Currently, there is no way to extract them from the unit file,
though this is in principle possible. It is not required to do this, the program can be compiled without
it, but then the translation of the strings isn't possible.

92

CHAPTER 9. RESOURCE STRINGS

9.3 Updating the string tables

Having compiled a program with resourcestrings is not enough to internationalize your program. At
run-time, the program must initialize the string tables with the correct values for the anguage that
the user selected. By default no such initialization is performed. All strings are initialized with their
declared values.

The objpas unit provides the mechanism to correctly initialize the string tables. There is no need
to include this unit in auses clause, since it is automatically loaded when a program or unit is

compiled inDelphi or objfpc mode. Since this is required to use resource strings, the unit is
always loaded when needed.

The resource strings are stored in tables, one per unit, and one for the program, if it contains a
resourcestring section as well. Each resourcestring is stored with it's name, hash value, default
value, and the current value, all AssiStrings

The objpas unit offers methods to retrieve the number of resourcestring tables, the number of strings
per table, and the above information for each string. It also offers a method to set the current value
of the strings.

Here are the declarations of all the functions:

Function ResourceStringTableCount : Longint;
Function ResourceStringCount(Tablelndex : longint) : longint;
Function GetResourceStringName(Tablelndex,
Stringlndex : Longint) : Ansistring;
Function GetResourceStringHash(Tablelndex,
Stringindex : Longint) : Longint;
Function GetResourceStringDefaultValue(Tablelndex,
Stringlndex : Longint) : AnsiString;
Function GetResourceStringCurrentValue(Tablelndex,
Stringlndex : Longint) : AnsiString;
Function SetResourceStringValue(Tablelndex,
StringIindex : longint;
Value : Ansistring) : Boolean;
Procedure SetResourceStrings (SetFunction : TResourcelterator);

Two other function exist, for convenience only:

Function Hash(S : AnsiString) : longint;
Procedure ResetResourceTables;

Here is a short explanation of what each function does. A more detailed explanation of the functions
can be found in th&®eference guide

ResourceStringTableCount returns the number of resource string tables in the program.

ResourceStringCount returns the number of resource string entries in a given table (tables are de-
noted by a zero-based index).

GetResourceStringNamereturns the name of a resource string in a resource table. This is the
name of the unit, a dot (.) and the name of the string constant, all in lowercase. The strings are
denoted by index, also zero-based.

GetResourceStringHashreturns the hash value of a resource string, as calculated by the compiler
with theHash function.

GetResourceStringDefaultValuereturns the default value of a resource string, i.e. the value that
appears in the resource string declaration, and that is stored in the binary.

93

file:../ref/ref.html

CHAPTER 9. RESOURCE STRINGS

GetResourceStringCurrentValue returns the current value of a resource string, i.e. the value set
by the initialization (the default value), or the value set by some previous internationalization
routine.

SetResourceStringValuesets the current value of a resource string. This function must be called to
initialize all strings.

SetResourceStringsgiving this function a callback will cause the calback to be called for all re-
source strings, one by one, and set the value of the string to the return value of the callback.

Two other functions exist, for convenience only:

Hash can be used to calculate the hash value of a string. The hash value stored in the tables is the
result of this function, applied on the default value. That value is calculated at compile time
by the compiler.

ResetResourceTablewill reset all the resource strings to their default values. It is called by the
initialization code of the objpas unit.

Given someTranslate function, the following code would initialize all resource strings:

Var 1,J : Longint;
S : AnsiString;

begin
For 1:=0 to ResourceStringTableCount-1 do
For J:=0 to ResourceStringCount(i)-1 do
begin
S:=Translate(GetResourceStringDefaultValue(l,J));
SetResourceStringValue(l,J,S);
end;
end;

Other methods are of course possible, andifamslate function can be implemented in a variety
of ways.

9.4 GNU gettext

The unitgettext provides a way to internationalize an application with the Gd#ttext utilities.
This unit is supplied with the Free Component Library (FCL). it can be used as follows:

for a given application, the following steps must be followed:
1. Collect all resource string files and concatenate them together.

2. Invoke therstconv program with the file resulting out of step 1, resulting in a sinpkefile
containing all resource strings of the program.

3. Translate thepo file of step 2 in all required languages.

4. Run themsgfmt formatting program on all thepo files, resulting in a set afmo files, which
can be distributed with your application.

5. Call thegettext unit’s TranslateReosurceStrings method, giving it a template for the
location of themo files, e.g. as in

94

CHAPTER 9. RESOURCE STRINGS

TranslateResourcestrings(intl/restest.%s.mo’);

the %sspecifier will be replaced by the contents of theNGenvironment variable. This call
should happen at program startup.

An example program exists in the FCL sources, infttéests directory.

9.5 Caveat

In principle it is possible to translate all resource strings at any time in a running program. However,
this change is not communicated to other strings; its change is noticed only when a constant string is
being used.

Consider the following example:

Const
help = 'With a little help of a programmer.’;

Var
A : AnsiString;
begin
{ lots of code }
A:=Help;
{ Again some code}
TranslateStrings;
{ More code }
After the call toTranslateStrings , the value ofA will remain unchanged. This means that the
assignmenfA:=Help must be executed again in order for the change to become visible. This is

important, especially for GUI programs which have e.g. a menu. In order for the change in resource
strings to become visible, the new values must be reloaded by program code into the menus ...

95

Chapter 10

Thread programming

10.1 Introduction

Free Pascal supports thread programming: There is a language construct available for thread-local
storage (hreadVar), and cross-platform low-level thread routines are available for those operating
systems that support threads.

All routines for threading are available in the system unit, under the form of a thread manager. A
thread manager must implement some basic routines which the RTL needs to be able to support
threading. For Windows, a default threading manager is integrated in the system unit. For other
platforms, a thread manager must be included explicitly by the programmer. On systems where
posix threads are available, tb#reads unit implements a thread manager which uses the C POSIX
thread library. No native pascal thread library exists for such systems.

Although itis not forbidden to do so, it is not recommended to use system-specific threading routines:
The language support for multithreaded programs will not be enabled, meaning that threadvars will
not work, the heap manager will be confused which may lead to severe program errors.

If no threading support is present in the binary, the use of thread routines or the creation of a thread
will result in an exception or a run-time error 232.

For LINUX (and other Unixes), the C thread manager can be enabled by insertiothteads
unit in the program’s unit clause. Without this, threading programs will give an error when started.
It is imperative that the unit be inserted as early in the uses clause as possible.

At a later time, a system thread manager may be implemented which implements threads without
Libc support.

10.2 Programming threads

To start a new thread, tHgeginThread function should be used. It has one mandatory argument:

the function which will be executed in the new thread. The result of the function is the exit result

of the thread. The thread function can be passed a pointer, which can be used to acces initialization
data: The programmer must make sure that the data is accessible from the thread and does not go out
of scope before the thread has accessed it.

Type
TThreadFunc = function(parameter : pointer) : longint;
function BeginThread(ThreadFunction: tthreadfunc) : DWord;

96

CHAPTER 10. THREAD PROGRAMMING

function BeginThread(ThreadFunction: tthreadfunc;
p: pointer): DWord,;
function BeginThread(ThreadFunction: tthreadfunc;
p: pointer;
var Threadld : THandle) : DWord;

If present, the pointep will be passed to the thread function when it is started (otheride, is
passed). IThreadID is present, the ID of the thread will be stored in it.

The newly started thread will run until thehreadFunction exits, or until it explicitly calls the
EndThread function:

procedure EndThread(ExitCode : DWord);
procedure EndThread,;

The exitcode can be examined by the code which started the thread.
The following is a small example of how to program a thread:

{$mode obijfpc}
{$threading on}

uses
sysutils {$ifdef unix},cthreads{$endif} ;

const
threadcount = 100;
stringlen = 10000;

var
finished : longint;

threadvar
thri : longint;

function f(p : pointer) : longint;

var
S . ansistring;

begin
Writeln('thread ’,longint(p),” started’);
thri:=0;
while (thri<stringlen) do
begin
S:=s+'1";
inc(thri);
end;
Writeln('thread ’,longint(p),” finished’);
InterLockedIncrement(finished);
f:=0;
end;

var
i : longint;

97

CHAPTER 10. THREAD PROGRAMMING

begin
finished:=0;
for i:=1 to threadcount do
BeginThread(@f,pointer(i));
while finished<threadcount do ;
Writeln(finished);
end.

ThelnterLockedIncrement is a thread-safe version of the standbrd function.

To provide system-independent support for thread programming, some utility functions are imple-
mented to manipulate threads. To use these functions the thread ID must have been retrieved when
the thread was started, because most functions require the ID to identify the thread on which they
should act:

function SuspendThread(threadHandle: dword): dword;
function ResumeThread(threadHandle: dword): dword;
function KillThread(threadHandle: dword): dword;
function WaitForThreadTerminate(threadHandle: dword;
TimeoutMs : longint): dword;

function ThreadSetPriority(threadHandle: dword;

Prio: longint): boolean;
function ThreadGetPriority(threadHandle: dword): Integer;
function GetCurrentThreadld: dword;
procedure ThreadSwitch;

The meaning of these functions should be clear:

SuspendThread Suspends the execution of the thread.
ResumeThread Resumes execution of a suspended thread.
KillThread Kills the thread: the thread is removed from memory.

WaitForThreadTerminate Waits for the thread to terminate. The function returns when the thread
has finished executing, or when the timeout expired.

ThreadSetPriority Sets the execution priority of the thread. This call is not always allowed.
ThreadGetPriority Returns the current execution priority of the thread.
GetCurrentThreadld Returns the ID of the current thread.

ThreadSwitch Allows other threads to execute at this point, can cause a thread switch, but this is
not guaranteed, it depends on the OS and the number of processors.

10.3 Ciritical sections

When programming threads, it is sometimes necessary to avoid concurrent access to certain re-
sources, or to avoid having a certain routine executed by two threads. This can be done using a
Critical Section. The FPC heap manager uses critical sections when multithreading is enabled.

The TRTLCriticalSection type is an Opaque type; it depends on the OS on which the code is
executed. It should be initialized before it is first used, and should be disposed of when it is no longer
necessary.

98

CHAPTER 10. THREAD PROGRAMMING

To protect a piece of code, a call EmterCriticalSection should be made: When this call
returns, it is guaranteed that the current thread is the only thread executing the subsequent code. The
call may have suspended the current thread for an indefinite time to ensure this.

When the protected code is finishegsaveCriticalSection must be called: this will enable
other threads to start executing the protected code. To minimize waiting time for the threads, it is
important to keep the protected block as small as possible.

The definition of these calls is as follows:

procedure InitCriticalSection(var cs: TRTLCriticalSection);

procedure DoneCriticalSection(var cs: TRTLCriticalSection);
procedure EnterCriticalSection(var cs: TRTLCriticalSection);
procedure LeaveCriticalSection(var cs: TRTLCriticalSection);

The meaning of these calls is again almost obvious:

InitCriticalSection Initializes a critical section. This call must be made before efimterCrititicalSection
or LeaveCriticalSection is used.

DoneCeriticalSection Frees the resources associated with a critical section. After this call neither
EnterCrititicalSection nor LeaveCriticalSection may be used.

EnterCriticalSection When this call returns, the calling thread is the only thread running the code
between th&nterCriticalSection call and the followind-eaveCiriticalsection
call.

LeaveCriticalSection Signals that the protected code can be executed by other threads.

Note that the_eaveCriticalsection call mustbe executed. Failing to do so will prevent all
other threads from executing the code in the critical section. It is therefore good practice to enclose
the critical section in dry..finally block. Typically, the code will look as follows:

Var

MyCS : TRTLCriticalSection;
Procedure CriticalProc;

begin
EnterCriticalSection(MyCS);
Try
/I Protected Code
Finally
LeaveCriticalSection(MyCS);
end;
end;

Procedure ThreadProcedure;
begin

/I Code executed in threads...
CriticalProc;

/I More Code executed in threads...
end;

begin

99

CHAPTER 10. THREAD PROGRAMMING

InitCriticalSection(MyCS);

/I Code to start threads.

DoneCriticalSection(MyCS);
end.

10.4 The Thread Manager

Just like the heap is implemented using a heap manager, and widestring management is left to a
widestring manager, the threads have been implemented using a thread manager. This means that
there is a record which has fields of procedural type for all possible functions used in the thread
routines. The thread routines use these fields to do the actual work.

The thread routines install a system thread manager specific for each system. On Windows, the
normal Windows routines are used to implement the functions in the thread manager. On Linux
and other unices, the system thread manager does nothing: it will generate an error when thread
routines are used. The rationale is that the routines for thread management are located in the C
library. Implementing the system thread manager would make the RTL dependent on the C library,
which is not desirable. To avoid dependency on the C library, the Thread Manager is implemented
in a separate unitthreads). The initialization code of this unit sets the thread manager to a thread
manager record which uses the C (pthreads) routines.

The thread manager record can be retrieved and set just as the record for the heap manager. The
record looks (currently) as follows:

TThreadManager = Record

InitManager . Function : Boolean;
DoneManager . Function : Boolean;
BeginThread : TBeginThreadHandler;
EndThread . TEndThreadHandler;
SuspendThread : TThreadHandler;
ResumeThread . TThreadHandler;
KillThread . TThreadHandler;
ThreadSwitch . TThreadSwitchHandler;
WaitForThreadTerminate : TWaitForThreadTerminateHandler;
ThreadSetPriority . TThreadSetPriorityHandler;
ThreadGetPriority . TThreadGetPriorityHandler;
GetCurrentThreadld . TGetCurrentThreadldHandler;
InitCriticalSection . TCriticalSectionHandler;
DoneCriticalSection . TCriticalSectionHandler;
EnterCriticalSection . TCriticalSectionHandler;
LeaveCriticalSection . TCriticalSectionHandler;
InitThreadVar : TInitThreadVarHandler;
RelocateThreadVar . TRelocateThreadVarHandler;
AllocateThreadVars . TAllocateThreadVarsHandler;
ReleaseThreadVars . TReleaseThreadVarsHandler;
end;

The meaning of most of these functions should be obvious from the descriptions in previous sections.

ThelnitManager andDoneManager are called when the threadmanager is kétlanager),
or when it is unsetfoneManager). They can be used to initialize the thread manager or to clean
up when it is done. If either of them returRalse , the operation fails.

There are some special entries in the record, linked to thread variable management:

InitThreadVar is called when a thread variable must be initialized. It is of type

100

CHAPTER 10. THREAD PROGRAMMING

TInitThreadVarHandler = Procedure(var offset : dword;size : dword);

Theoffset parameter indicates the offset in the thread variable block: All thread variables
are located in a single block, one after the other. The size parameter indicates the size of the
thread variable. This function will be called once for all thread variables in the program.

RelocateThreadVar is called each time when a thread is started, and once for the main thread. It is
of type:

TRelocateThreadVarHandler = Function(offset : dword) : pointer;

It should return the new location for the thread-local variable.

AllocateThreadVars is called when room must be allocated for all threadvars for a new thread.
It's a simple procedure, without parameters. The total size of the threadvars is stored by the
compiler in thehreadvarblocksize global variable. The heap manager nmybe used
in this procedure: the heap manager itself uses threadvars, which have not yet been allocated.

ReleaseThreadVarsThis procedure (without parameters) is called when a thread terminates, and
all memory allocated must be released again.

101

Chapter 11

Optimizations

11.1 Non processor specific

The following sections describe the general optimizations done by the compiler, they are not proces-
sor specific. Some of these require some compiler switch override while others are done automati-
cally (those which require a switch will be noted as such).

11.1.1 Constant folding
In Free Pascal, if the operand(s) of an operator are constants, they will be evaluated at compile time.
Example

X:=1+2+3+6+5;
will generate the same code as
x:=17;

Furthermore, if an array index is a constant, the offset will be evaluated at compile time. This means
that accessing MyData[5] is as efficient as accessing a normal variable.

Finally, callingChr, Hi, Lo, Ord, Pred , or Succ functions with constant parameters generates no
run-time library calls, instead, the values are evaluated at compile time.

11.1.2 Constant merging

Using the same constant string, floating point value or constant set two or more times generates only
one copy of that constant.

11.1.3 Short cut evaluation

Evaluation of boolean expression stops as soon as the result is known, which makes code execute
faster then if all boolean operands were evaluated.

11.1.4 Constant set inlining

Using thein operator is always more efficient then using the equivadent=, <=, >=, < and>
operators. This is because range comparisons can be done more easily lithn with normal

102

CHAPTER 11. OPTIMIZATIONS

comparison operators.

11.1.5 Small sets

Sets which contain less then 33 elements can be directly encoded using a 32-bit value, therefore no
run-time library calls to evaluate operands on these sets are required; they are directly encoded by
the code generator.

11.1.6 Range checking

Assignments of constants to variables are range checked at compile time, which removes the need of
the generation of runtime range checking code.

11.1.7 And instead of modulo

When the second operand ofreodon an unsigned value is a constant power of 2ar@ah instruction
is used instead of an integer division. This generates more efficient code.

11.1.8 Shifts instead of multiply or divide

When one of the operands in a multiplication is a power of two, they are encoded using arithmetic
shift instructions, which generates more efficient code.

Similarly, if the divisor in adiv operation is a power of two, it is encoded using arithmetic shift
instructions.

The same is true when accessing array indexes which are powers of two, the address is calculated
using arithmetic shifts instead of the multiply instruction.

11.1.9 Automatic alignment
By default all variables larger then a byte are guaranteed to be aligned at least on a word boundary.
Alignment on the stack and in the data section is processor dependant.

11.1.10 Smart linking

This feature removes all unreferenced code in the final executable file, making the executable file
much smaller.

Smart linking is switched on with th€€x command-line switch, or using tH8SMARTLINK ON}
global directive.

11.1.11 Inline routines

The following runtime library routines are coded directly into the final executdldeHi , High ,
Sizeof , TypeOf, Length , Pred, Succ, Inc , Dec andAssigned .

11.1.12 Stack frame omission

Under specific conditions, the stack frame (entry and exit code for the routine, see section section
6.3 page63) will be omitted, and the variable will directly be accessed via the stack pointer.

103

CHAPTER 11. OPTIMIZATIONS

Conditions for omission of the stack frame:

e The function has no parameters nor local variables.
¢ Routine is declared with thessembler modifier.

e Routine is not a class.

11.1.13 Register variables

When using theOr switch, local variables or parameters which are used very often will be moved
to registers for faster access.

11.2 Processor specific

This lists the low-level optimizations performed, on a processor per processor basis.

11.2.1 Intel 80x86 specific

Here follows a listing of the optimizing techniques used in the compiler:

1. When optimizing for a specific Processe®pl, -Op2, -Op3 , the following is done:
e In case statements, a check is done whether a jump table or a sequence of conditional
jumps should be used for optimal performance.

e Determines a number of strategies when doing peephole optimization,neogzbl
(%ebp), %eax will be changed intaxorl %eax,%eax; movb (%ebp),%al
for Pentium and PentiumMMX.

2. When optimizing for speed @G, the default) or size-Qg), a choice is made between using
shorter instructions (for size) suchexster $4 , or longer instructionsubl $4,%esp for
speed. When smaller size is requested, data is aligned to minimal boundaries. When speed is
requested, data is aligned on most efficient boundaries as much as possible.

3. Fast optimizations-QO1): activate the peephole optimizer

4. Slower optimizations-(2): also activate the common subexpression elimination (formerly
called the "reloading optimizer")

5. Uncertain optimizations-Qu): With this switch, the common subexpression elimination al-
gorithm can be forced into making uncertain optimizations.

Although you can enable uncertain optimizations in most cases, for people who do not under-
stand the following technical explanation, it might be the safest to leave them off.

Remark: If uncertain optimizations are enabled, the CSE algortihm assumes that
¢ |f something is written to a local/global register or a procedure/function parameter, this
value doesn’t overwrite the value to which a pointer points.
e If something is written to memory pointed to by a pointer variable, this value doesn'’t
overwrite the value of a local/global variable or a procedure/function parameter.

The practical upshot of this is that you cannot use the uncertain optimizations if you both write
and read local or global variables directly and through pointers (this incMaegarameters,
as those are pointers t0o).

The following example will produce bad code when you switch on uncertain optimizations:

104

CHAPTER 11. OPTIMIZATIONS

Var temp: Longint;

Procedure Foo(Var Bar: Longint);
Begin
If (Bar = temp)
Then
Begin
Inc(Bar);
If (Bar <> temp) then Writeln('bug!)
End
End;

Begin
Foo(Temp);
End.

The reason it produces bad code is because you access the global vigiaplieoth through
its nameTemp and through a pointer, in this case using Bee variable parameter, which is
nothing but a pointer tdempin the above code.

On the other hand, you can use the uncertain optimizations if you access global/local variables
or parameters through pointers, amly access them through this poirtter

For example:

Type TMyRec = Record
a, b: Longint;
End;
PMyRec = "TMyRec;

TMyRecArray = Array [1..100000] of TMyRec;
PMyRecArray = “TMyRecArray;

Var MyRecArrayPtr: PMyRecArray;
MyRecPtr: PMyRec;
Counter: Longint;

Begin
New(MyRecArrayPtr);
For Counter := 1 to 100000 Do
Begin
MyRecPtr := @MyRecArrayPtr’"[Counter];
MyRecPtr*.a := Counter,
MyRecPtr*.b := Counter div 2;
End;
End.

Will produce correct code, because the global variddidgRecArrayPtr is not accessed
directly, but only through a pointeMyRecPtr in this case).

In conclusion, one could say that you can use uncertain optimizatiolysvhen you know
what you're doing.

1 You can use multiple pointers to point to the same variable as well, that doesn’t matter.

105

CHAPTER 11. OPTIMIZATIONS

11.2.2 Motorola 680x0 specific

Using the-O2 (the default) switch does several optimizations in the code produced, the most notable
being:

Sign extension from byte to long will useXTB

Returning of functions will us®&TD

Range checking will generate no run-time calls

Multiplication will use the longMULSinstruction, no runtime library call will be generated

Division will use the longdDIVS instruction, no runtime library call will be generated

11.3 Optimization switches
This is where the various optimizing switches and their actions are described, grouped per switch.

-On: with n = 1..3: these switches activate the optimizer. A higher level automatically includes all
lower levels.

e Level 1 (O1) activates the peephole optimizer (common instruction sequences are re-
placed by faster equivalents).

e Level 2 (O2) enables the assembler data flow analyzer, which allows the common subex-
pression elimination procedure to remove unnecessary reloads of registers with values
they already contain.

e Level 3 (0O3) enables uncertain optimizations. For more info, see -Ou.

-OG: This causes the code generator (and optimizer, IF activated), to favor faster, but code-wise
larger, instruction sequences (such sisBl $4,%esp ") instead of slower, smaller instruc-
tions ("enter $4 "). This is the default setting.

-Og: This one is exactly the reverse of -OG, and as such these switches are mutually exclusive:
enabling one will disable the other.

-Or: This setting causes the code generator to check which variables are used most, so it can keep
those in a register.

-Opn: with n = 1..3: Setting the target processor does NOT activate the optimizer. It merely influ-
ences the code generator and, if activated, the optimizer:

e During the code generation process, this setting is used to decide whether a jump table
or a sequence of successive jumps provides the best performance in a case statement.

e The peephole optimizer takes a number of decisions based on this setting, for example it
translates certain complex instructions, such as

movzbl (mem), %eax|
to a combination of simpler instructions

xorl %eax, %eax
movb (mem), %al

for the Pentium.

-Ou: This enables uncertain optimizations. You cannot use these always, however. The previous
section explains when they can be used, and when they cannot be used.

106

CHAPTER 11. OPTIMIZATIONS

11.4 Tips to get faster code

Here, some general tips for getting better code are presented. They mainly concern coding style.

Find a better algorithm. No matter how much you and the compiler tweak the code, a quicksort
will (almost) always outperform a bubble sort, for example.

Use variables of the native size of the processor you're writing for. This is currently 32-bit or
64-bit for Free Pascal, so you are best to use longword and longint variables.

Turn on the optimizer.

Write your if/then/else statements so that the code in the "then"-part gets executed most of the
time (improves the rate of successful jump prediction).

Do not use ansistrings, widestrings and exception support, as these require a lot of code over-
head.

Profile your code (see the -pg switch) to find out where the bottlenecks are. If you want,
you can rewrite those parts in assembler. You can take the code generated by the compiler
as a starting point. When given the command-line switch, the compiler will not erase the
assembler file at the end of the assembly process, so you can study the assembler file.

11.5 Tips to get smaller code

Here are some tips given to get the smallest code possible.

Find a better algorithm.
Use the-Og compiler switch.

Regroup global static variables in the same module which have the same size together to min-
imize the number of alignment directives (which increases.liss and.data sections
unecessarily). Internally this is due to the fact that all static data is written to in the assembler
file, in the order they are declared in the pascal source code.

Do not use theedecl modifier, as this generates about 1 additional instruction after each
subroutine call.

Use the smartlinking options for all your units (including sestem unit).

Do not use ansistrings, widestrings and exception support, as these require a lot of code over-
head.

Turn off range checking and stack-checking.

Turn off runtime type information generation

107

Chapter 12

Programming shared libraries

12.1 Introduction

Free Pascal supports the creation of shared libraries on several operating systems. The following
table (table 12.1)) indicates which operating systems support the creation of shared libraries.

Table 12.1: Shared library support

Operating systems Library extension Library prefix

linux .S0 lib
windows dll <none>
BeOS .S0 lib
FreeBSD .S0 lib
NetBSD .S0 lib

The library prefix column indicates how the names of the libraries are resolved and created. For
example, underiNuX, the library name will alwaus have thi® prefix when it is created. So if

you create a library calleahylib, underLinux, this will result in thelibmylib.so. Furthermore, when
importing routines from shared libraries, it is not necessary to give the library prefix or the filename
extension.

In the following sections we discuss how to create a library, and how to use these libraries in pro-
grams.

12.2 Creating a library

Creation of libraries is supported in any mode of the Free Pascal compiler, but it may be that the
arguments or return values differ if the library is compiled in 2 different modes. E.g. if your function
expects anteger argument, then the library will expect different integer sizes if you compile it

in Delphi mode or in TP mode.

A library can be created just as a program, only it useslittrary keyword, and it has an
exports section. The following listing demonstrates a simple library:

Listing: progex/subs.pp
{

Example library

108

CHAPTER 12. PROGRAMMING SHARED LIBRARIES

}

library subs;

function SubStr(CString: PChar;FromPos,ToPos: Longint): PChar;
cdecl ; export ;

var
Length : Integer;

begin
Length StrLen (CString);
SubStr := CString + Length ;
if (FromPos > 0) and (ToPos >= FromPos) then
begin
if Length >= FromPos then
SubStr := CString + FromPos — 1;
if Length > ToPos then
CString[ToPos] := #0;
end ;
end ;

exports
SubStr;

end .

The functionSubStr does not have to be declared in the library file itself. It can also be declared in
the interface section of a unit that is used by the library.

Compilation of this source will result in the creation of a library caliedubs.so on UNIX systems,
or subs.dll on WiNDOws or 0s/2. The compiler will take care of any additional linking that is
required to create a shared library.

The library exports one functionSubStr . The case is important. The case as it appears in the
exports clause is used to export the function.

If you want your library to be called from programs compiled with other compilers, it is important
to specify the correct calling convention for the exported functions. Since the generated programs
by other compilers do not know about the Free Pascal calling conventions, your functions would be
called incorrectly, resulting in a corrupted stack.

On WINDOWS, most libraries use thstdcall ~ convention, so it may be better to use that one if
your library is to be used on WDows systems. On mosiNIX systems, the C calling convention
is used, therefore thelecl modifier should be used in that case.

12.3 Using a library in a pascal program

In order to use a function that resides in a library, it is sufficient to declare the function as it exists in
the library as amxternal function, with correct arguments and return type. The calling convention
used by the function should be declared correctly as well. The compiler will then link the library as
specified in theexternal ~ statement to your program

For example, to use the library as defined above from a pascal program, you can use the following
pascal program:

Listing: progex/psubs.pp

1If you omit the library name in thexternal modifier, then you can still tell the compiler to link to that library using
the{$Linklib} directive.

109

CHAPTER 12. PROGRAMMING SHARED LIBRARIES

program testsubs;

function SubStr(const CString: PChar; FromPos, ToPos: longint): PChar;
cdecl ; external ’'subs’;

var
s: PChar;
FromPos, ToPos: Integer;
begin
s := 'Test’;
FromPos := 2;
ToPos := 3;
WriteLn (SubStr(s, FromPos, ToPos));
end .

As is shown in the example, you must declare the functioextéernal . Here also, it is necessary

to specify the correct calling convention (it should always match the convention as used by the
function in the library), and to use the correct casing for your declaration. Also notice, that the
library importing did not specify the filename extension, nor wadithe prefix added.

This program can be compiled without any additional command-switches, and should run just like
that, provided the library is placed where the system can find it. For examplaNnox, this is
/usr/lib or any directory listed in théetc/ld.so.conf file. On WINDOWS, this can be the program
directory, the WNDOwS system directory, or any directoy mentioned in B¥&TH

Using the library in this way links the library to your program at compile time. This means that

1. The library must be present on the system where the program is compiled.
2. The library must be present on the system where the program is executed.

3. Both libraries must be exactly the same.

Or it may simply be that you don't know the name of the function to be called, you just know the
arguments it expects.

It is therefore also possible to load the library at run-time, store the function address in a procedural
variable, and use this procedural variable to access the function in the library.

The following example demonstrates this technique:
Listing: progex/plsubs.pp

program testsubs;

Type
TSubStrFunc =
function (const CString:PChar;FromPos,ToPos: longint):PChar;cdecl ;

Function dlopen(name: pchar;mode: longint): pointer;cdecl ;external 'dl’;
Function disym(lib: pointer; name: pchar): pointer;cdecl ;external 'dl’;
Function dlclose(lib: pointer):longint;cdecl ;external ’'dl’;

var
s: PChar;
FromPos, ToPos: Integer;
lib : pointer;
SubStr : TSubStrFunc;

begin

110

Remark:

CHAPTER 12. PROGRAMMING SHARED LIBRARIES

s := 'Test’;
FromPos := 2;
ToPos := 3;
lib:=dlopen(’'libsubs.so’ ,1);
Pointer (Substr):=dlsym(lib , "SubStr’);
WriteLn (SubStr(s, FromPos, ToPos));
diclose(lib);
end .

As in the case of compile-time linking, the crucial thing in this listing is the declaration of the
TSubStrFunc type. It should match the declaration of the function you're trying to use. Failure
to specify a correct definition will result in a faulty stack or, worse still, may cause your program to
crash with an access violation.

12.4 Using a pascal library from a C program

The examples in this section assumamux system; similar commands as the ones below exist for
other operating systems, though.

You can also call a Free Pascal generated library from a C program:
Listing: progex/ctest.c

#include <string.h>
extern char x SubStr(const char %, int, int);

int main ()
{
char xs;
int FromPos, ToPos;

s = strdup("Test");
FromPos = 2;

ToPos = 3;
printf ("Result from SubStr: '%s '\n", SubStr(s, FromPos, ToPos));
return O;

}

To compile this example, the following command can be used:
gcc -0 ctest ctest.c -Isubs

provided the code is intest.c.
The library can also be loaded dynamically from C, as shown in the following example:
Listing: progex/ctest2.c

#include <dlfcn.h>
#include <string.h>

int main ()
{
void =xlib;
char xs;
int FromPos, ToPos;
char « (x SubStr)(const char =, int , int);

111

CHAPTER 12. PROGRAMMING SHARED LIBRARIES

lib = dlopen("./libsubs.so", RTLD_LAZY);
SubStr = disym(lib , "SUBSTR");

s = strdup("Test");

FromPos = 2;

ToPos = 3;

printf ("Result from SubStr: '%s '\n" , (xSubStr)(s, FromPos, ToPos));
diclose (lib);

return O;

}

This can be compiled using the following command:
gcc -0 ctest?2 ctest2.c -Idl

The-Idl tells gcc that the program needs thwll.so library to load dynamical libraries.

12.5 Some Windows issues

By default, Free Pascal (actually, the linker used by Free Pascal) creates libraries that are not relo-
catable. This means that they must be loaded at a fixed address in memory: this address is called
the ImageBase address. If two Free Pascal generated libraries are loaded by a program, there will be
a conflict, because the first librarie already occupies the memory location where the second library
should be loaded.

There are 2 switches in Free Pascal which control the generation of shared libraries undem/s:

-WR Generate a relocatable library. This library can be moved to another location in memory if the
ImageBase address it wants is already in use.

-WB Specify the ImageBase address for the generated library. The standard ImageBase used by Free
Pascal i9x10000000 . This switch allows to change that by specifying another address, for
instanceWB11000000 .

The first option is preferred, as a program may load many libraries present on the system, and they
could already be using the ImageBase address. The second option is faster, as no relocation needs to
be done if the ImageBase address is not yet in use.

112

Chapter 13

Using Windows resources

13.1 The resource directivepR

Under WINDOWS, you can include resources in your executable or library usinfpfRefilename}
directive. These resources can then be accessed through the standaWwg API calls.

When the compiler encounters a resource directive, it just creates an entry in thepuniie; it
doesn't link the resource. Only when it creates a library or executable, it looks for all the resource
files for which it encountered a directive, and tries to link them in.

The default extension for resource filesriss. When the filename has as the first character an asterix
(*), the compiler will replace the asterix with the name of the current unit, library or program.

Remark: This means that the asterix may only be used afterit , library or program clause.

13.2 Creating resources

The Free Pascal compiler itself doesn’t create any resource files; it just compiles them into the exe-
cutable. To create resource files, you can use some GUI tools as the Borland resource workshop; but
it is also possible to use a MDows resource compiler likeNU windres. windres comes with the

GNU binutils, but the Free Pascal distribution also contains a version which you can use.

The usage of windres is straightforward,; it reads an input file describing the resources to create and
outputs a resource file.

A typical invocation ofwindres would be
windres -i mystrings.rc -o mystrings.res

this will read themystrings.rc file and output anystrings.res resource file.

A complete overview of the windres tools is outside the scope of this document, but here are some
things you can use it for:

stringtables that contain lists of strings.

bitmaps which are read from an external file.

icons which are also read from an external file.

Version information which can be viewed with the WDows explorer.

Menus Can be designed as resources and used in your GUI applications.

113

CHAPTER 13. USING WINDOWS RESOURCES

Arbitrary data Can be included as resources and read with the windows API calls.

Some of these will be described below.

13.3 Using string tables.

String tables can be used to store and retrieve large collections of strings in your application.
A string table looks as follows:

STRINGTABLE { 1, "hello World !"
2, "hello world again !"
3, "last hello world !I" }
You can compile this (we assume the file is callests.rc) as follows:
windres -i tests.rc -o tests.res
And this is the way to retrieve the strings from your program:
program tests;
{$mode obijfpc}
Uses Windows;
{$R *.res}
Function LoadResourceString (Index : longint): Shortstring;
begin
SetLength(Result,LoadString(FindResource(0,Nil,RT_STRING),Index, @Result[1],SizeOf(Result)))

end;

Var
I: longint;

begin
For i:=1 to 3 do
Writeln (Loadresourcestring(1));
end.

The call toFindResource searches for the stringtable in the compiled-in resourcesLdadString
function then reads the string with indexout of the table, and puts it in a buffer, which can then be
used. Both calls are in thgindows unit.

13.4 Inserting version information

The win32 API allows to store version information in your binaries. This information can be made
visible with the WNDows Explorer, by right-clicking on the executable or library, and selecting the
'Properties’ menu. In the tab "Version’ the version information will be displayed.

Here is how to insert version information in your binary:

114

CHAPTER 13. USING WINDOWS RESOURCES

1 VERSIONINFO
FILEVERSION 4, 0, 3, 17
PRODUCTVERSION 3, 0, 0, O
FILEFLAGSMASK 0

FILEOS 0x40000

FILETYPE 1

{
BLOCK "StringFilelnfo"

{
BLOCK "040904E4"

{

VALUE "CompanyName", "Free Pascal"

VALUE "FileDescription”, "Free Pascal version information extractor"
VALUE "FileVersion", "1.0"

VALUE “InternalName”, "Showver"

VALUE "LegalCopyright", "GNU Public License"

VALUE "OriginalFilename", "showver.pp"

VALUE "ProductName", "Free Pascal"

VALUE "ProductVersion", "1.0"

}
}
}

As you can see, you can insert various kinds of information in the version info block. The key-
word VERSIONINFOmarks the beginning of the version information resource block. The keywords
FILEVERSION, PRODUCTVERSIOgive the actual file version, while the blo8kringFileInfo

gives other information that is displayed in the explorer.

The Free Component Library comes with a uffie{nfo) that allows to extract and view version
information in a straightforward and easy manner; the demo program that comes \sitbvitver)
shows version information for an arbitrary executable or DLL.

13.5 Inserting an application icon

When WINDOWS shows an executable in the Explorer, it looks for an icon in the executable to show
in front of the filename, the application icon.

Inserting an application icon is very easy and can be done as follows
Applcon ICON "filename.ico"

This will read the filefilename.ico and insert it in the resource file.

13.6 Using a pascal preprocessor

Sometimes you want to use symbolic hames in your resource file, and use the same names in your
program to access the resources. To accomplish this, there exists a preprocessodrizs that
understands pascal syntdgrcp. This preprocessor is shipped with the Free Pascal distribution.

The idea is that the preprocessor reads a pascal unit that has some symbolic constants defined in it,
and replaces symbolic names in the resource file by the values of the constants in the unit:

As an example: consider the follwoing unit:

115

CHAPTER 13. USING WINDOWS RESOURCES

unit myunit;

interface

Const
First = 1;
Second = 2:
Third = 3;

Implementation
end.

And the following resource file:
#include "myunit.pp"
STRINGTABLE { First, "hello World !"
Second, "hello world again !"
Third, "last hello world " }
if you invoke windres with thepreprocessor option:
windres --preprocessor fprcp -i myunit.rc -o myunit.res

Then the preprocessor will replace the symbolic names ‘first’, 'second’ and 'third’ with their actual
values.

In your program, you can then refer to the strings by their symbolic names (the constants) instead of
using a numeric index.

116

Appendix A

Anatomy of a unit file

A.1 Basics

As described in chaptet, page53, unit description files (hereafter called PPU files for short), are

used to determine if the unit code must be recompiled or not. In other words, the PPU files act as
mini-makefiles, which is used to check dependencies of the different code modules, as well as verify
if the modules are up to date or not. Furthermore, it contains all public symbols defined for a module.

The general format of thepu file format is shown in figureA.1).

To read or write the ppufile, the ppu umipu.pas can be used, which has an object called tppufile
which holds all routines that deal with ppufile handling. While describing the layout of a ppufile, the
methods which can be used for it are presented as well.

A unit file consists of basically five or six parts:

. A unit header.

. A general information part (wrongly named interface section in the code)
. A definition part. Contains all type and procedure definitions.

. A symbol part. Contains all symbol names and references to their definitions.

aa ~r W N

. A browser part. Contains all references from this unit to other units and inside this unit. Only
available when thef_has_browser flag is set in the unit flags

6. A file implementation part (currently unused).

A.2 reading ppufiles

We will first create an object ppufile which will be used below. We are openingestippu as an
example.

var
ppufile : pppufile;
begin
{ Initialize object }
ppufile:=new(pppufile,init('test.ppu’);
{ open the unit and read the header, returns false when it fails }

117

APPENDIX A. ANATOMY OF A UNIT FILE

if not ppufile.openfile then
error(’error opening unit test.ppu’);

{ here we can read the unit }
{ close unit }

ppufile.closefile;
{ release object }

dispose(ppufile,done);
end;

Note: When a function fails (for example not enough bytes left in an entry) it sepptifde.error
variable.

A.3 The Header

The header consists of a recotdguheader) containing several pieces of information for recom-
pilation. This is shown in tableX.1). The header is always stored in little-endian format.

Table A.1: PPU Header

offset | size (bytes)| description

00h 3 Magic : 'PPU’ in ASCII

03h 3 PPU File format version (e.g : '021’ in ASCII)

06h 2 Compiler version used to compile this module (major,minor)

08h 2 Code module target processor

0Ah 2 Code module target operating system

0Ch 4 Flags for PPU file

10h 4 Size of PPU file (without header)

14h 4 CRC-32 of the entire PPU file

18h 4 CRC-32 of partial data of PPU file (public data mostly)

1Ch 8 Reserved
The header is already read by theufile.openfile command. You can access all fields using
ppufile.header which holds the current header record.

Table A.2: PPU CPU Field values

value description

unknown

Intel 80x86 or compatible
Motorola 680x0 or compatible
Alpha AXP or compatible
PowerPC or compatible

A WNPEFLO

Some of the possible flags in the header, are described in #al3e Not all the flags are described,
for more information, read the source codegpfi.pas.

118

APPENDIX A. ANATOMY OF A UNIT FILE

Table A.3: PPU Header Flag values

Symbolic bit flag name Description

uf_init Module has an initialization (either Delphi or TP style) section.
uf_finalize Module has a finalization section.

uf_big_endian All the data stored in the chunks is in big-endian format.
uf_has_browser Unit contains symbol browser information.

uf_smart_linked The code module has been smartlinked.

uf_static_linked The code is statically linked.

uf_has_resources Unit has resource section.

A.4 The sections

Apart from the header section, all the data in the PPU file is separated into data blocks, which permit
easily adding additional data blocks, without compromising backward compatibility. This is similar
to both Electronic Arts IFF chunk format and Microsoft's RIFF chunk format.

Each 'chunk’ {ppuentry) has the following format, and can be nested:

Table A.4: chunk data format

offset | size (bytes)| description

00h 1 Block type (nested (2) or main (1))
01lh 1 Block identifier
02h 4 Size of this data block

06h+ | <variable> | Data for this block

Each main section chunk must end with an end chunk. Nested chunks are used for record, class or
object fields.

To read an entry you can simply cpppufile.readentry:byte , itreturns theppuentry.nr
field, which holds the type of the entry. A common way how this works is (example is for the sym-
bols):

repeat
b:=ppufile.readentry;
case b of
ib<etc> : begin

end;

ibendsyms : break;
end;

until false;

The possible entry types are founddpu.pas, but a short description of the most common ones are
shown in table A.5).

Then you can parse each entry type yourgghiufile.readentry will take care of skipping un-
read bytes in the entry and reads the next entry correctly! A special funckipimtilentry(untilb:byte):boolean;
which will read the ppufile until it finds entryntilo in the main entries.

Parsing an entry can be done witpufile.getxxx functions. The available functions are:

procedure ppufile.getdata(var b;len:longint);

119

APPENDIX A. ANATOMY OF A UNIT FILE

Table A.5: Possible PPU Entry types

Symbolic name Location Description

ibmodulename General Name of this unit.

ibsourcefiles General Name of source files.

ibusedmacros General Name and state of macros used.
ibloadunit General Modules used by this units.
inlinkunitofiles General Obiject files associated with this unit.
iblinkunitstaticlibs General Static libraries associated with this unjit.
iblinkunitsharedlibs General Shared libraries associated with this unit.
ibendinterface General End of General information section.
ibstartdefs Interface Start of definitions.

ibenddefs Interface End of definitions.

ibstartsyms Interface Start of symbol data.

ibendsyms Interface End of symbol data.
ibendimplementation Implementation End of implementation data.
ibendbrowser Browser End of browser section.

ibend General End of Unit file.

function getbyte:byte;

function getword:word;

function getlongint:longint;

function getreal:ppureal;

function getstring:string;

To check if you're at the end of an entry you can use the following function:
function EndOfEntry:boolean;

notes:

1. ppureal is the best real that exists for the cpu where the unit is created for. Currently it is
extended fori386 andsingle for m68k.

2. theibobjectdef andibrecorddef = have stored a definition and symbol section for them-
selves. So you'll need a recursive call. $gidump.pp for a correct implementation.

A complete list of entries and what their fields contain can be fournmgburdump.pp.

A.5 Creating ppufiles

Creating a new ppufile works almost the same as reading one. First you need to init the object and
call create:

ppufile:=new(pppufile,init(’output.ppu’));
ppufile.createfile;

After that you can simply write all needed entries. You'll have to take care that you write at least the
basic entries for the sections:

120

APPENDIX A. ANATOMY OF A UNIT FILE

ibendinterface

ibenddefs

ibendsyms

ibendbrowser (only when you've set uf has_browser!)
ibendimplementation

ibend

Writing an entry is a little different than reading it. You need to first put everything in the entry with
ppufile.putxxx:

procedure putdata(var b;len:longint);
procedure putbyte(b:byte);
procedure putword(w:word);
procedure putlongint(l:longint);
procedure putreal(d:ppureal);
procedure putstring(s:string);

After putting all the things in the entry you need to gatiufile.writeentry(ibnr:byte)
whereibnr is the entry number you're writing.

At the end of the file you need to calpufile.writeheader to write the new header to the
file. This takes automatically care of the new size of the ppufile. When that is also done you can call
ppufile.closefile and dispose the object.

Extra functions/variables available for writing are:

ppufile.NewHeader;
ppufile.NewEntry;

This will give you a clean header or entry. Normally this is called automaticafipurdile.writeentry ,
so there should be no need to call these methods.

ppufile.flush;
to flush the current buffers to the disk
ppufile.do_crc:boolean;

set to false if you don’'t want that the crc is updated, this is necessary if you write for example the
browser data.

121

APPENDIX A. ANATOMY OF A UNIT FILE

Figure A.1: The PPU file format

Header

General information

Fublic definitions

Interface
iInfarmation

Fublic symbols

—

mentation
rmation

Appendix B

Compiler and RTL source tree
structure

B.1 The compiler source tree

All compiler source files are in several directories, normally the non-processor specific parts are
in source/compiler. Subdirectories are present for each of the supported processors and target
operating systems.

For more informations about the structure of the compiler have a look at the Compiler Manual which
contains also some informations about compiler internals.

The compiler directory also contains a subdirectarls , which contains mainly the utilities for
creation and maintainance of the message files.

B.2 The RTL source tree

The RTL source tree is divided in many subdirectories, but is very structured and easy to understand.
It mainly consists of three parts:

1. A OS-dependent directory. This contains the files that are different for each operating system.
When compiling the RTL, you should do it here. The following directories exist:
e atari for the ATARI.
e amiga for the AMIGA.
e beos for BEOS. It has one subdirectory for each of the supported processors.
e darwin for the unix-compatibility layer on Mac OS.
o freebsd for the FREEBSD platform.
e go32vl ForDos, using the GO32v1 extender. Not maintained any more.
e go32v2 ForDos, using the GO32v2 extender.
e linux for LINUX platforms. It has one subdirectory for each of the supported processors.
e macos for the Mac OS platform.
e morphos for the MorphOS platform.

e netbsd for NETBSD platforms. It has one subdirectory for each of the supported pro-
cessors.

123

APPENDIX B. COMPILER AND RTL SOURCE TREE STRUCTURE

netware for the Novell netware platform.

openbsd for the OpenBSD platform.

palmos for the LM OS Dragonball processor based platform.
os2 for 09/2.

sunos for the SOLARIS platform. It has one subdirectory for each of the supported
processors.

gnx for the QNX REALTIME PLATFORM.

win32 for Win32 platforms.

posix for posix interfaces (used for easier porting).

unix for unix common interfaces (used for easier porting).

2. A processor dependent directory. This contains files that are system independent, but proces-
sor dependent. It contains mostly optimized routines for a specific processor. The following
directories exist:

i386 for the Intel 80x86 series of processors.

m68k for the Motorola 680x0 series of processors.

powerpc for the PowerPC processor.

sparc for the SUN SPARC processor.

x86_64 for Intel compatible 64-bit processors such as the AMD64.

3. An OS-independent and Processor independent diredioey:This contains complete units,
and include files containing interface parts of units as well as generic versions of processor
specific routines.

124

Appendix C

Compiler limits

There are certain compiler limits inherent to the compiler:

1. Procedure or Function definitions can be nested to a level of 32. This can be changed by
changing thenaxnesting constant.

2. Maximally 1024 units can be used in a program when using the compiler. You can change this
by redefining themaxunits constant in the compiler source file.

3. The maximum nesting level of pre-processor macros is 16. This can be changed by changing
the value ofmax_macro_nesting

4. Arrays are limited to 2 GBytes in size in the default processor mode.

For processor specific compiler limitations refer to the Processor Limitations section in this guide

(6.9).

125

Appendix D

Compiler modes

Here we list the exact effect of the different compiler modes. They can be set witMidre switch,
or by command line switches.

D.1 FPC mode

This mode is selected by tIl®MODE FPGwitch. On the command-line, this means that you use
none of the other compatibility mode switches. It is the default mode of the compilerq). This
means essentially:

1.

You must use the address operator to assign procedural variables.

2. A forward declaration must be repeated exactly the same by the implementation of a func-

N o o0 b~ W

tion/procedure. In particular, you can not omit the parameters when implementing the function
or procedure.

. Overloading of functions is allowed.
. Nested comments are allowed.

. The Objpas unit is NOT loaded.

. You can use the cvar type.

. PChars are converted to strings automatically.

D.2 TP mode

This mode is selected by tfBMODE TRswitch. It tries to emulate, as closely as possible, the
behavior of Turbo Pascal 7. On the command-line, this mode is selected Bytiheswitch.

1.
2.
3.

Enumeration sizes default to a storage size of 1 byte if there are less than 257 elements.
You cannot use the address operator to assign procedural variables.

A forward declaration must not be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you can omit the parameters when implementing the function or
procedure.

126

APPENDIX D. COMPILER MODES

4. Overloading of functions is not allowed.
5. The Objpas unit is NOT loaded.
6. Nested comments are not allowed.

7. You can not use the cvar type.

D.3 Delphi mode

This mode is selected by ti®MODE DELPH$witch. It tries to emulate, as closely as possible, the
behavior of Delphi 4. On the command-line, this mode is selected byMbelpih switch.

1. You can not use the address operator to assign procedural variables.

2. A forward declaration must not be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you not omit the parameters when implementing the function or
procedure.

3. Overloading of functions is not allowed.
4. Nested comments are not allowed.

5. The Objpas unit is loaded right after tegstem unit. One of the consequences of this is that
the typelnteger s redefined akongint

6. Parameters in class methods can have the same names as class properties (although it is bad
programming practice).

D.4 GPC mode

This mode is selected by tl #VIODE GP6witch. On the command-line, this mode is selected by
the-Mgpc switch.

1. You must use the address operator to assign procedural variables.

2. Aforward declaration must not be repeated exactly the same by the implementation of a func-
tion/procedure. In particular, you can omit the parameters when implementing the function or
procedure.

. Overloading of functions is not allowed.
. The Objpas unitis NOT loaded.

. Nested comments are not allowed.

o o1 B~ W

. You can not use the cvar type.

D.5 OBJFPC mode

This mode is selected by tMODE OBJFP&witch. On the command-line, this mode is selected
by the-Mobjfpc switch.

1. You must use the address operator to assign procedural variables.

127

APPENDIX D. COMPILER MODES

. A forward declaration must be repeated exactly the same by the implementation of a func-

tion/procedure. In particular, you can not omit the parameters when implementing the function
or procedure.

. Overloading of functions is allowed.
. Nested comments are allowed.

. The Objpas unit is loaded right after tegstem unit. One of the consequences of this is that

the typelnteger is redefined akongint

. You can use the cvar type.
. PChars are converted to strings automatically.

. Parameters in class methods cannot have the same names as class properties.

D.6 MAC mode

This mode is selected by ti ®VIODE MASG&witch. On the command-line, this mode is selected by
the-MMACswitch. It mainly switches on some extra features:

=
o

© oo N o o »~ w N P

. Support for thebSETCdirective.

. Support for the$IFC , SELSECand$ENDCdirectives.

. Support for thdJNDEFINEDconstruct in macros.

. Support forTRUEandFALSE as values in macro expressions.

. Macros may be assigned hexadecimal numbers $i#d5 .

. Thelmplementation keyword can be omitted if the implementation section is empty.
. Thecdecl maodifier keyword can be abbreviated@o

. UNIV modifer for types in parameter lists is accepted, but is otherwise ignored.

(ellipsis) is allowed in procedure declarations, is functionally equal tovdrargs
keyword.

. Procedures declared in the interface section which do not have a counterpart in the imple-

mentation section are considered external (implicit externals). In other words, for external
procedures, thexternal keyword may be omitted.

(Note: Macros are called 'Compiler Variables’ in Mac OS dialects.)

Currently, the following Mac OS pascal extensions are not yet supportdéd@mode:

A nested procedure cannot be an actual parameter to a procedure.

No anonymous procedure types in formal parameters.

External procedures declared in the interface must have the diréotigenal
Continue instead ofCycle .

Break instead ofLeave

128

APPENDIX D. COMPILER MODES

e Exit should not have the name of the procedure to exit as parameter. Instead, for a function
the value to return can be supplied as parameter.

o No propagatingises .

e Compiler directives defined in interface sections are not exported.

129

Appendix E

Using fpcmake

E.1 Introduction

Free Pascal comes with a special makefile tipamake, which can be used to construchkakefile
for use withGNU make. All sources from the Free Pascal team are compiled with this system.

fpcmake uses a fileMakefile.fpc and constructs a filMakefile from it, based on the settings in
Makefile.fpc.

The following sections explain what settings can be séflakefile.fpc, what variables are set by
fpcmake , what variables it expects to be set, and what targets it defines. After that, some settings
in the resultingMakefile are explained.

E.2 Functionality

fpcmake generates a makefile, suitable for GMiake, which can be used to

Compile units and programs, fit for testing or for final distribution.
Compile example units and programs separately.
Install compiled units and programs in standard locations.

Make archives for distribution of the generated programs and units.

o w0 N RE

Clean up after compilation and tests.

fpcmake knows how the Free Pascal compiler operates, which command line options it uses, how it
searches for files and so on; It uses this knowledge to construct sensible command-lines.

Specifically, it constructs the following targets in the final makefile:
all Makes all units and programs.

debug Makes all units and programs with debug info included.
smart Makes all units and programs in smartlinked version.
examples Makes all example units and programs.

shared Makes all units and programs in shared library version (currently disabled)

130

APPENDIX E. USING FPCMAKE

install Installs all units and programs.

sourceinstall Installs the sources to the Free Pascal source tree.

exampleinstall Installs any example programs and units.

distinstall Installs all units and programs, as well as example units and programs.

zipinstall Makes an archive of the programs and units which can be used to install them on another
location, i.e. it makes an archive that can be used to distribute the units and programs.

zipsourceinstall Makes an archive of the program and unit sources which can be used to distribute
the sources.

zipexampleinstall Makes an archive of the example programs and units which can be used to install
them on another location, i.e. it makes an archive that can be used to distribute the example
units and programs.

zipdistinstall Makes an archive of both the normal as well as the example programs and units. This
archive can be used to install them on another location, i.e. it makes an archive that can be
used to distribute.

clean Cleans all files that are produced by a compilation.

distclean Cleans all files that are produced by a compilation, as well as any archives, examples or
files left by examples.

cleanall Same as clean.

info Produces some information on the screen about used programs, file and directory locations,
where things will go when installing and so on.

Each of these targets can be highly configured, or even totally overridden by the configuration file
Makefile.fpc

E.3 Usage

fpcmake reads aMakefile.fpc and converts it to dakefile suitable for reading bysNuU make
to compile your projects. It is similar in functionality to GN&bnfigure or Imake for making X
projects.

fpcmake accepts filenames of makefile description files as its command-line arguments. For each of
these files it will create dMakefile in the same directory where the file is located, overwriting any
existing file with that name.

If no options are given, it just attempts to read the Kilakefile.fpc in the current directory and tries
to construct aMakefile from it if the -m option is given. Any previously existiniflakefile will be
erased.

if the -p option is given, instead of lMlakefile, aPackage.fpc is generated. Aackage.fpc file
describes the package and it's dependencies on other packages.

Additionally, the following command-line options are recognized:
-p A Package.fpc file is generated.
-w A Makefile is generated.

-T targets Support only specified target systenBargets is a comma-separated list of targets.
Only rule for the specified targets will be written.

131

APPENDIX E. USING FPCMAKE

-v Be more verbose.
-q be quiet.

-h Writes a small help message to the screen.

E.4 Format of the configuration file

This section describes the rules that can be present in the file that isffexiriake.

The file Makefile.fpc is a plain ASCII file that contains a number of pre-defined sections as in a
WINDowsS .ini-file, or a Samba configuration file.

They look more or less as follows:

[package]
name=mysq|l
version=1.0.5

[target]
units=mysql_com mysqgl_version mysq|l
examples=testdb

[require]
libc=y

[install]
fpcpackage=y

[default]
fpedir=../..

The following sections are recognized (in alphabetical order):

E.4.1 clean

Specifies rules for cleaning the directory of units and programs. The following entries are recognized:

units names of all units that should be removed when cleaning. Don't specify extensions, the make-
file will append these by itself.

files names of files that should be removed. Specify full filenames.

E.4.2 compiler

In this section values for various compiler options can be specified, such as the location of several
directories and search paths.

The following general keywords are recognised:

options The value of this key will be passed on to the compiler as options.

version If a specific or minimum compiler version is needed to compile the units or programs, then
this version should be specified here.

132

APPENDIX E. USING FPCMAKE

The following keys can be used to control the location of the various directories used by the compiler:

unitdir A colon-separated list of directories that must be added to the unit search path of the com-
piler.

librarydir A colon-separated list of directories that must be added to the library search path of the
compiler.

objectdir A colon-separated list of directories that must be added to the object file search path of
the compiler.

targetdir Specifies the directory where the compiled programs should go.

sourcedir A space separated list of directories where sources can reside. This will be used for the
vpath setting ofGNU make.

unittargetdir Specifies the directory where the compiled units should go.

includedir A colon-separated list of directories that must be added to the include file search path of
the compiler.

sourcedir

E.4.3 Default

Thedefault section contains some default settings. The following keywords are recognized:

cpu Specifies the default target processor for whichNtakefile should compile the units and pro-
grams. By default this is determined from the default compiler processor.

dir Specifies any subdirectories that make should also descend in and make the specified target there
as well.

fpcdir Specifies the directory where all the Free Pascal source trees reside. Below this directory the
Makefile expects to find thetl, fcl andpackages directory trees.

rule Specifies the default rule to execufpcmake will make sure that this rule is executed if make
is executed without arguments, i.e., without an explicit target.

target Specifies the default operating system target for whichMhkefile should compile the units
and programs. By default this is determined from the default compiler target.

E.4.4 Dist

TheDist section controls the generation of a distribution package. A distribution package is a set
of archive files (zip files or tar files on unix systems) that can be used to distribute the package.

The following keys can be placed in this section:
destdir Specifies the directory where the generated zip files should be placed.

zipname Name of the archive file to be created. If no zipname is specified, this defaults to the
package name.

ziptarget This is the target that should be executed before the archive file is made. This defaults to
install

133

APPENDIX E. USING FPCMAKE

E.4.5 Install

Contains instructions for installation of the compiler units and programs. The following keywords
are recognized:

basedir The directory that is used as the base directory for the installation of units. Default this is
prefix appended witllib/fpc/FPC_VERSION for LINUX or simply theprefix on
other platforms.

datadir Directory where data files will be installed, i.e. the files specified wittHiles keyword.

fpcpackage A boolean key. If this key is specified and equglghe files will be installed as a fpc
package under the Free Pascal units directory, i.e. under a separate directory. The directory
will be named with the name specified in thackage section.

files extra data files to be installed in the directory specified withdidadir key.

prefix is the directory below which all installs are done. This corresponds tpteéix argument
to GNU configure. It is used for the installation of programs and units. By default, thigss
onLINUX, and/pp on all other platforms.

units extra units that should be installed, and which are not part of the unit targets. The units in the
units target will be installed automatically.

Units will be installed in the subdirectoynits/$(OS_TARGET) of thedirbase entry.

E.4.6 Package

If a package (i.e. a collection of units that work together) is being compiled, then this section is used
to keep package information. The following information can be stored:

name The name of the package. When installing it under the package directory, this name will be
used to create a directory (unless it is overridden by one of the installation options)

version The version of this package.

main If the package is part of another package, this key can be specified to indicate which package
it is part of.

E.4.7 Prerules

Anything that is in this section will be inserted as-is in the makdfdéorethe makefile target rules
that are generated by fpcmake. This means that any variables that are normally defined by fpcmake
rules should not be used in this section.

E.4.8 Requires

This section is used to indicate dependency on external packages (i.e units) or tools. The following
keywords can be used:

fpcmake Minimal version of fpcmake that thimakefile.fpc needs.

packages Other packages that should be compiled before this package can be compiled. Note that
this will also add all packages these packages depend on to the dependencies of this package.
By default, the Free Pascal Run-Time Library is added to this list.

134

APPENDIX E. USING FPCMAKE

libc a boolean value that indicates whether this package needs the C library.

nortl a boolean that prevents the addition of the Free Pascal Run-Time Library to the required pack-
ages.

unitdir These directories will be added to the units search path of the compiler.

packagedir List of package directories. The packages in these directories will be made as well
before making the current package.

tools A list of executables of extra tools that are required. The full path to these tools will be defined
in the makefile as a variable with the same name as the tool name, only in uppercase. For
example, the following definition:

tools=upx

will lead to the definition of a variable with the naridXwhich will contain the full path to
theupx executable.

E.4.9 Rules

In this section dependency rules for the units and any other needed targets can be inserted. It will be
included at the end of the generated makefile. Targets or 'default rules’ that are defiipetnake

can be inserted here; if they are not present, tipemake will generate a rule that will call the
genericfpc_ version. For a list of standard targets that will be definefploynake, see sectioix.2,
pagel30.

For example, it is possible to define a targit . If it is not defined, therfipcmake will generate
one which simply call$pc_all

all: fpc_all

Thefpc_all rule will make all targets as defined in tlharget section.

E.4.10 Target

This is the most important section of theakefile.fpc file. Here the files are defined which should
be compiled when the "all’ target is executed.

The following keywords can be used there:
dirs A space separated list of directories where make should also be run.

exampledirs A space separated list of directories with example programs. The examples target will
descend in this list of directories as well.

examples A space separated list of example programs that need to be compiled when the user asks
to compile the examples. Do not specify an extension, the extension will be appended.

loaders A space separated list of names of assembler files that must be assembled. Don't specify
the extension, the extension will be appended.

programs A space separated list of program names that need to be compiled. Do not specify an
extension, the extension will be appended.

rsts a list of rst files that needs to be converted.pw files for use withGNU gettext and interna-
tionalization routines.

units A space separated list of unit names that need to be compiled. Do not specify an extension,
just the name of the unit as it would appear wmsas clause is sufficient.

135

APPENDIX E. USING FPCMAKE

E.5 Programs needed to use the generated makefile

At least the following programs are needed by the geneidtgdfile to function correctly:

Cp a copy program.

date a program that prints the date.

install a program to install files.

make themake program, obviously.

pwd a program that prints the current working directory.

rm a program to delete files.

zip the zip archiver program. (on dos/windows/OS2 systems only)

tar the tar archiver program (on Unix systems only).

These are standard programsloRux systems, with the possible exceptionmoéke. For bos or
WINDOWS NT, they can be found in the filmakeutil.zip on the Free Pascal FTP site.

The following programs are optionally needed if you use some special targets. Which ones you need
are controlled by the settings in theols section.

cmp abosand WINDOwsS NT file comparer.

diff a file comparer.

ppdep the ppdep depency lister. Distributed with Free Pascal.

ppufiles the ppufiles unit file dependency lister. Distributed with Free Pascal.
ppumove the Free Pascal unit mover.

sed thesed program.

upx the UPX executable packer.
All of these can also be found on the Free Pascal FTP sitedgiand WINDOWS NT. ppdep,ppufiles

andppumove are distributed with the Free Pascal compiler.

E.6 Variables that affect the generated makefile

The makefile generated lfiigcmake contains a lot of variables. Some of them are set in the makefile
itself, others can be set and are taken into account when set.

These variables can be split in two groups:

e Directory variables.

e Compiler command-line variables.

Each group will be discussed separately.

136

APPENDIX E. USING FPCMAKE

E.6.1 Directory variables
The first set of variables controls the directories that are recognised in the makefile. They should not
be set in theMakefile.fpc file, but can be specified on the commandline.

INCDIR this is a list of directories, separated by spaces, that will be added as include directories to
the compiler command-line. Each directory in the list is prepended-itand added to the
compiler options.

UNITDIR this is a list of directories, separated by spaces, that will be added as unit search directo-
ries to the compiler command-line. Each directory in the list is prependedmitrand added
to the compiler options.

LIBDIR is a list of library paths, separated by spaces. Each directory in the list is prepended with
-FI and added to the compiler options.

OBJDIR is a list of object file directories, separated by spaces, that is added to the object files path,
i.e. Each directory in the list is prepended wiEo .

E.6.2 Compiler command-line variables

The following variable can be set on theake command-line, they will be recognised and integrated
in the compiler command-line options.:

CREATESMART If this variable is defined, it tells the compiler to create smartlinked units. Adds
-CX to the command-line options.

DEBUG If defined, this will cause the compiler to include debug information in the generated units
and programs. It addgl to the compiler command-line, and will define thEBUGIefine.

LINKSMART Defining this variable tells the compiler to use smartlinking. It aekiX to the
compiler command-line options.

OPT Any options that you want to pass to the compiler. The conten®Rfis simply added to the
compiler command-line.

OPTDEF Are optional defines, added to the command-line of the compiler. They getepended
to them.

OPTIMIZE if this variable is defined, this will addDG2p3 to the command-line options.

RELEASE if this variable is defined, this will add th&Xs -OG2p3 -n options to the command-
line options, and will define thRELEASEdefine.

STRIP if this variable is defined, this will add th&s option to the command-line options.

VERBOSE if this variable is defined, thetvnwi will be added to the command-line options.

E.7 Variables set byfpcmake

The makefile generated ligcmake contains a lot of makefile variablefocmake will write all of
the keys in themakefile.fpc as makefile variables in the for®ECTION_KEYNAMEThis means
that the following section:

[package]

name=mysq|
version=1.0.5

137

APPENDIX E. USING FPCMAKE

will result in the following variable definitions:

override PACKAGE_NAME=mysq|
override PACKAGE_VERSION=1.0.5

Most targets and rules are constructed using these variables. They will be listed below, together with
other variables that are defined fpcmake.

The following sets of variables are defined:

e Directory variables.
e Program names.
¢ File extensions.

e Target files.

Each of these sets is discussed in the subsequent:

E.7.1 Directory variables
The following compiler directories are defined by the makefile:

BASEDIR is set to the current directory if thvd command is available. If not, it is setto ’.".

COMPILER_INCDIR is aspace-separated list of library paths. Each directory in the list is prepended
with -FI and added to the compiler options. Set byitiedir keyword in theCompiler
section.

COMPILER_LIBDIR is aspace-separated list of library paths. Each directory in the listis prepended
with -FI and added to the compiler options. Set bylthdir ~ keyword in theCompiler
section.

COMPILER_OBJDIR is a list of object file directories, separated by spaces. Each directory in the
list is prepended withFo and added to the compiler options. Set bydh@ir keyword in
theCompiler section.

COMPILER_TARGETDIR This directory is added as the output directory of the compiler, where
all units and executables are written, i.e. it géiE prepended. It is set by thargtdir
keyword in theCompiler section.

COMPILER_TARGETUNITDIR If set, this directory is added as the output directory of the com-
piler, where all units and executables are written, i.e. it get$ prepended.lt is set by the
targtdir keyword in theDirs section.

COMPILER_UNITDIR is a list of unit directories, separated by spaces. Each directory in the list
is prepended withFu and is added to the compiler options. Set byuh#dir keyword in
theCompiler section.

GCCLIBDIR (LINUX only) is set to the directory whedégcc.a is. If needgcclib is set to
True in theLibs section, then this directory is added to the compiler commandline with
-FI .

OTHERLIBDIR is a space-separated list of library paths. Each directory in the list is prepended
with -FI and added to the compiler options. If it is not defined on linux, then the contents of
the/etc/ld.so.conf file is added.

138

APPENDIX E. USING FPCMAKE

The following directories are used for installs:

INSTALL_BASEDIR s the base for all directories where units are installed. By default,@ux ,
this is set tab(INSTALL_PREFIX)/lib/fpc/$(RELEASEVER)
On other systems, itis set$PREFIXINSTALLDIR) . You can also set it with thigasedir
variable in thdnstall section.

INSTALL_BINDIR is set to$(INSTALL_BASEDIR) /bin onLINUX, and
$(INSTALL_BASEDIR) /bin /$(OS_TARGET) on other systems. This is the place where
binaries are installed.

INSTALL_DATADIR The directory where data files are installed. Set byDiaa key in the
Install section.

INSTALL_LIBDIR is set to$(INSTALL_PREFIX) /lib on LINUX,
and$(INSTALL_UNITDIR) on other systems.

INSTALL_PREFIX is set to/ust/local on LINUX, /pp on DOS or WINDOWS NT. Set by the
prefix keyword in thelnstall section.

INSTALL_UNITDIR is where units will be installed. This is set to
$(INSTALL_BASEDIR) /units$(OS_TARGET). If the units are compiled as a package,
$(PACKAGE_NAME])s added to the directory.

E.7.2 Target variables

The second set of variables controls the targets that are constructed by the makefile. They are created
by fpcmake, so you can use them in your rules, but you shouldn’t assign values to them yourself.

TARGET_DIRS This is the list of directories that make will descend into when compiling. Set by
theDirs key intheTarget section?

TARGET_EXAMPLES The list of examples programs that must be compiled. Set bgxhmples
key in theTarget section.

TARGET_EXAMPLEDIRS the list of directories that make will descend into when compiling
examples. Set by thexampledirs key in theTarget section.

TARGET_LOADERS is a list of space-separated names that identify loaders to be compiled. This
is mainly used in the compiler's RTL sources. It is set by kb&ders keyword in the
Targets section.

TARGET_PROGRAMS This is a list of executable names that will be compiled. the makefile
appendss(EXEEXT) to these names. It is set by theograms keyword in theTarget
section.

TARGET_UNITS This s alist of unit names that will be compiled. The makefile app&iEBUEXT)
to each of these names to form the unit file name. The sourcename is formed by adding
$(PASEXT) . Itis set by theunits keyword in theTarget section.

ZIPNAME is the name of the archive that will be created by the makefile. It is set lzighame
keyword in theZip section.

ZIPTARGET is the target that is built before the archive is made. this target is built first. If suc-
cessful, the zip archive will be made. Itis set by #igtarget keyword in theZip section.

139

APPENDIX E. USING FPCMAKE

E.7.3 Compiler command-line variables
The following variables control the compiler command-line:

CPU_SOURCE the target CPU type is added as a define to the compiler command line. This is
determined by the Makefile itself.

CPU_TARGET the target CPU type is added as a define to the compiler command line. This is
determined by the Makefile itself.

OS_SOURCE What platform the makefile is used on. Detected automatically.

OS_TARGET What platform will be compiled for. Added to the compiler command-line with a
prepended.

E.7.4 Program names

The following variables are program names, used in makefile targets.

AS The assembler. Default setas.

COPY a file copy program. Default set tp -fp.

COPYTREE a directory tree copy program. Default set-frp.

CMP a program to compare files. Default settap.

DEL a file removal program. Default setitm -f.

DELTREE a directory removal program. Default setrta -rf.

DATE a program to display the date.

DIFF a program to produce diff files.

ECHO an echo program.

FPC the Free Pascal compiler executable. Default spptB86.exe

INSTALL a program to install files. Default setitstall -m 644 on LINUX .

INSTALLEXE a program to install executable files. Default seintstall -m 755 on LINUX .
LD The linker. Default set tdd.

LDCONFIG (LINuXx only) the program used to update the loader cache.

MKDIR a program to create directories if they don't exist yet. Default setstall -m 755 -d
MOVE a file move program. Default set tov -f

PP the Free Pascal compiler executable. Default sppttB886.exe

PPAS the name of the shell script created by the compiler if-eoption is specified. This com-
mand will be executed after compilation, if tkee option was detected among the options.

PPUMOVE the program to move units into one big unit library.
PWD the pwd program.
SED a stream-line editor program. Default sestd.

UPX an executable packer to compress your executables into self-extracting compressed executa-
bles.

ZIPPROG a zip program to compress files. zip targets are made with this program

140

APPENDIX E. USING FPCMAKE

E.7.5 File extensions

The following variables denote extensions of files. These variables include (that) of the exten-
sion. They are appended to object names.

ASMEXT is the extension of assembler files produced by the compiler.
LOADEREXT is the extension of the assembler files that make up the executable startup code.
OEXT is the extension of the object files that the compiler creates.

PACKAGESUFFIX is a suffix that is appended to package names in zip targets. This serves so
packages can be made for different OSes.

PPLEXT is the extension of shared library unit files.

PPUEXT is the extension of default units.

RSTEXT is the extension of thest resource string files.
SHAREDLIBEXT is the extension of shared libraries.
SMARTEXT is the extension of smartlinked unit assembler files.

STATICLIBEXT is the extension of static libraries.

E.7.6 Target files
The following variables are defined to make targets and rules easier:

COMPILER is the complete compiler commandline, with all options added, aftekMakefile
variables have been examined.

DATESTR contains the date.

UNITPPUFILES a list of unit files that will be made. This is just the list of unit objects, with the
correct unit extension appended.

E.8 Rules and targets created bypcmake

Themakefile.fpc defines a series of targets, which can be called by your own targets. They have
names that resemble default names (such as 'all’, ‘clean’), only theyfhave prepended.

E.8.1 Pattern rules

The makefile makes the following pattern rules:

units how to make a pascal unit form a pascal source file.
executableshow to make an executable from a pascal source file.

object file how to make an object file from an assembler file.

141

APPENDIX E. USING FPCMAKE

E.8.2 Build rules

The following build targets are defined:

fpc_all target that builds all units and executables as well as loadddERFAULTUNITSs defined,
executables are excluded from the targets.

fpc_debug the same afpc_all , only with debug information included.
fpc_exestarget to make all executablesiXEOBJECTS

fpc_loaders target to make all files ihOADEROBJECTS
fpc_packagestarget to make all packages that are needed to make the files.
fpc_shared target that makes all units as dynamic libraries.

fpc_smart target that makes all units as smartlinked units.

fpc_units target to make all units iKNITOBJECTS

E.8.3 Cleaning rules
The following cleaning targets are defined:
fpc_clean cleans all files that result whdpc_all was made.

fpc_distclean is the same as both previous target commands, but also deletes all object, unit and
assembler files that are present.

E.8.4 archiving rules

The following archiving targets are defined:

fpc_zipdistinstall Target to make a distribution install of the package.
fpc_zipinstall Target to make an install zip of the compiled units of the package.
fpc_zipexampleinstall Target to make a zip of the example files.

fpc_zipsourceinstall Target to make a zip of the source files.

The zip is made uzing thelPEXE program. UndeLINuUX, a.tar.gz file is created.

E.8.5 Installation rules
fpc_distinstall target which calls thenstall andexampleinstall targets.

fpc_install target to install the units.
fpc_sourceinstall target to install the sources (in case a distribution is made)

fpc_exampleinstall target to install the examples. (in case a distribution is made)

142

APPENDIX E. USING FPCMAKE

E.8.6 Informative rules

There is only one target which produces information about the used variables, rules and targets:
fpc_info

The following information about the makefile is presented:

e general configuration information: the location of the makefile, the compiler version, target
Os, CPU.

¢ the directories, used by the compiler.

all directories where files will be installed.

all objects that will be made.

o all defined tools.

143

Appendix F

Compiling the compiler

F.1 Introduction

The Free Pascal team releases at intervals a completely prepared package, with compiler and units
all ready to use, the so-called releases. After a release, work on the compiler continues, bugs are

fixed and features are added. The Free Pascal team doesn’t make a new release whenever they
change something in the compiler, instead the sources are available for anyone to use and compile.

Compiled versions of RTL and compiler are also made daily, and put on the web.

There are, nevertheless, circumstances when the compiler must be recompiled manually. When
changes are made to compiler code, or when the compiler is downloaded through CVS.

There are essentially 2 ways of recompiling the compiler: by hand, or using the makefiles. Each of
these methods will be discussed.

F.2 Before starting

To compile the compiler easily, it is best to keep the following directory structure (a base directory
of /pp/src is supposed, but that may be different):

/pp/src/Makefile
/makefile.fpc
Irtl/linux
finc
/i386
/...
/compiler

When the makefiles should be used, the above directory tree must be used.

The compiler and rtl source are zipped in such a way that when both are unzipped in the same
directory (pp/src in the above) the above directory tree results.

There are 2 ways to start compiling the compiler and RTL. Both ways must be used, depending on
the situation. Usually, the RTL must be compiled first, before compiling the compiler, after which
the compiler is compiled using the current compiler. In some special cases the compiler must be
compiled first, with a previously compiled RTL.

How to decide which should be compiled first? In general, the answer is that the RTL should be
compiled first. There are 2 exceptions to this rule:

144

APPENDIX F. COMPILING THE COMPILER

1. The first case is when some of the internal routines in the RTL have changed, or if new in-
ternal routines appeared. Since the OLD compiler doesn’t know about these changed internal
routines, it will emit function calls that are based on the old compiled RTL, and hence are not
correct. Either the result will not link, or the binary will give errors.

2. The second case is when something is added to the RTL that the compiler needs to know about
(a new default assembler mechanism, for example).

How to know if one of these things has occurred? There is no way to know, except by mailing the
Free Pascal team. When the compiler cannot be recompiled when first compiling the RTL, then try
the other way.

F.3 Compiling using make

When compiling withmake it is necessary to have the above directory structure. Compiling the
compiler is achieved with the targeycle .

Under normal circumstances, recompiling the compiler is limited to the following instructions (as-
suming you start in directorfpp/src):

cd compiler
make cycle

This will work only if the makefile is installed correctly and if the needed tools are present in the
PATH Which tools must be installed can be found in apperitix

The above instructions will do the following:

1. Using the current compiler, the RTL is compiled in the correct directory, which is determined
by the OS. e.g. undenNux, the RTL is compiled in directorgtl/linux.

2. The compiler is compiled using the newly compiled RTL. If successful, the newly compiled
compiler executable is copied to a temporary executable.

3. Using the temporary executable from the previous step, the RTL is re-compiled.

4. Using the temporary executable and the newly compiled RTL from the last step, the compiler
is compiled again.

The last two steps are repeated 3 times, until three passes have been made or until the generated
compiler binary is equal to the binary it was compiled with. This process ensures that the compiler
binary is correct.

Compiling for another target: When compiling the compiler for another target, it is necessary to
specify theOS_TARGEakefile variable. It can be set to the following valugin32 , go32v2 ,

0s2 andlinux . As an example, cross-compilation for the go32v2 target from the win32 target is
chosen:

cd compiler
make cycle OS_TARGET=go32v2

This will compile the go32v2 RTL, and compilegp32v2 compiler.

When compiling a new compiler and the compiler should be compiled using an existing com-
piled RTL, theall target must be used, and another RTL directory than the default (which is the
.Irtl/$(OS_TARGET) directory) must be indicated. For instance, assuming that the compiled RTL
units are inpp/rtl, typing

145

APPENDIX F. COMPILING THE COMPILER

cd compiler
make clean
make all UNITDIR=/pp/rtl

should use the RTL from thipp/rtl dirrectory.

This will then compile the compiler using the RTL units/fp/rtl. After this has been done, the
'make cycle’ can be used, starting with this compiler:

make cycle PP=./ppc386

This will do themake cycle from above, but will start with the compiler that was generated by
themake all instruction.

In all cases, many options can be passechéie to influence the compile process. In general, the
makefiles add any needed compiler options to the command-line, so that the RTL and compiler can
be compiled. Additional options (e.g. optimization options) can be specified by passing them in
OPT.

F.4 Compiling by hand

Compiling by hand is difficult and tedious, but can be done. The compilation of RTL and compiler
will be treated separately.

F.4.1 Compiling the RTL

To recompile the RTL, so a new compiler can be built, at least the following units must be built, in
the order specified:

loadersthe program stubs, that are the startup code for each pascal program. These files lasve the
extension, because they are written in assembler. They must be assembled witlutas
assembler. These stubs are in the OS-dependent directory, exceptdar, where they are
in a processor dependent subdirectory ofitheux directory {386 or m68k).

systemthe system unit. This unit is named differently on different systems:

Only on GO32v2, it's calledystem.

ForLINUX it’s calledsyslinux.
For WiINDOWS NT it's called syswin32.

Forog/2 it's calledsysos2
This unit resides in the OS-dependent subdirectories of the RTL.
strings The strings unit. This unit resides in the subdirectory of the RTL.

dos Thedos unit. It resides in the OS-dependent subdirectory of the RTL. Possibly other units will
be compiled as a consequence of trying to compile this unit (e.ginx , thelinux unit will
be compiled, on go32, thgo32 unit will be compiled).

objects the objects unit. It resides in thec subdirectory of the RTL.

To compile these units on a i386, the following statements will do:

146

APPENDIX F. COMPILING THE COMPILER

ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 -Us -Sg syslinux.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 ../inc/strings.pp
ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 dos.pp

ppc386 -Tlinux -b- -Fi../inc -Fi../i386 -FE. -di386 ../inc/objects.pp

These are the minimum command-line options, needed to compile the RTL.

For another processor, th&86 should be changed into the appropriate processor. For another
operating system (target) tlsgslinux should be changed in the appropriate system unit file, and the
target OS setting-T) must be set accordingly.

Depending on the target OS there are other units that can be compiled, but which are not strictly
needed to recompile the compiler. The following units are available for all plaforms:

objpas Needed for Delphi mode. NeedS2 as an option. Resides in tlobjpas subdirectory.

sysutils many utility functions, like in Delphi. Resides in tlodjpas directory, and needsS2 to
compile.

typinfo functions to access RTTI information, like Delphi. Resides indhjpas directory.
math math functions like in Delphi. Resides in thbjpas directory.

mmx extensions for MMX class Intel processors. Resides in iri386 directory.

getopts a GNU compatible getopts unit. resides in the directory.

heaptrc to debug the heap. resides in the directory.

F.4.2 Compiling the compiler

Compiling the compiler can be done with one statement. It's always best to remove all units from
the compiler directory first, so something like

rm *.ppu *.o
OnLINUX, and onDOS

del *.ppu
del *.0

After this, the compiler can be compiled with the following command-line:
ppc386 -Tlinux -Fu../rtl/linux -di386 -dGDB pp.pas
So, the minimum options are:

1. The target OS. Can be skipped when compiling for the same target as the compiler which is
being used.

2. A path to an RTL. Can be skipped if a correct fpc.cfg configuration is on the system. If the
compiler should be compiled with the RTL that was compiled first, this should/ttEOS
(replace the OS with the appropriate operating system subdirectory of the RTL).

3. A define with the processor for which the compiler is compiled for. Required.

4. -dGDB. Required.

147

APPENDIX F. COMPILING THE COMPILER

5. -Sg is needed, some parts of the compiler geto statements (to be specific: the scanner).
So the absolute minimal command line is
ppc386 -di386 -dGDB -Sg pp.pas

Some other command-line options can be used, but the above are the minimum. A list of recognised
options can be found in tabl€&.(Q).

Table F.1: Possible defines when compiling FPC

Define does what

TP Needed to compile the compiler with Turbo or Borland Pascal.
GDB Support of the GNU Debugger (required switch).

1386 Generate a compiler for the Intel i386+ processor family.
M68K Generate a compiler for the M680x0 processor family.
EXTDEBUG Some extra debug code is executed.

MEMDEBUG Some memory usage information is displayed.

SUPPORT_MMX only i386: enables the compiler switdiMXvhich
allows the compiler to generate MMX instructions.
EXTERN_MSG Don't compile the msgfiles in the compiler, always use
external messagefiles (default for TP).
LOGSECONDPASS Write compiler node information in assembler output.
NOOPT Do not include the optimizer in the compiler.

This list may be subject to change, the sourcedfigpas always contains an up-to-date list.

148

Appendix G

Compiler defines during compilation

This appendix describes the possible defines when compiling programs using Free Pascal. A brief
explanation of the define, and when it is used is also given.

Table G.1: Possible defines when compiling using FPC

Define description

FPC_LINK_DYNAMIC Defined when the output will be linked dynamically.
This is defined when using the -XD compiler switch.

FPC_LINK_STATIC Defined when the output will be linked statically.
This is the default mode.

FPC_LINK_SMART Defined when the output will be smartlinked.
This is defined when using the -XX compiler switch.

FPC_PROFILE Defined when profiling code is added to program.
This is defined when using the -pg compiler switch.

FPK Always defined for Free Pascal.

FPC Always defined for Free Pascal.

VER1 Always defined for Free Pascal version 1.x.x.

VER1_0 Always defined for Free Pascal version 1.0.x.

ENDIAN_LITTLE Defined when the Free Pascal target is a little-endian processor
(80x86, Alpha, ARM).

ENDIAN_BIG Defined when the Free Pascal target is a big-endian processor
(680x0, PowerPC, SPARC, MIPS).

FPC_DELPHI Free Pascal is in Delphi mode, either using compiler switch -Sd or
using theSMODE DELPHdirective.

FPC_OBJFPC Free Pascal is in Delphi mode, either using compiler switch -S2 or
using theSMODE OBJFP@irective.

FPC TP Free Pascal is in Turbo Pascal mode, either using compiler switch -So or
using theSMODE TRilirective.

FPC_GPC Free Pascal is in GNU Pascal mode, either using compiler switch -Sp or

using theSMODE GPd@irective.

Remark: The ENDIAN_LITTLE andENDIAN_BIG defines were added starting from Free Pascal version
1.0.5.

Remark: TheunNix define was added starting from Free Pascal version 1.0.5. The BSD operating systems no
longer define LINUX starting with version 1.0.7.

149

APPENDIX G. COMPILER DEFINES DURING COMPILATION

Table G.2: Possible CPU defines when compiling using FPC

Define When defined?

CPUB86 Free Pascal target is an Intel 80x86 or compatible.
cpusg7 Free Pascal target is an Intel 80x86 or compatible.
CPUI386 Free Pascal target is an Intel 80386 or later.

CPUB68k Free Pascal target is a Motorola 680x0 or compatible.
CPUM68020 Free Pascal target is a Motorola 68020 or later.
CPUGS Free Pascal target is a Motorola 680x0 or compatible.
CPUSPARC Free Pascal target is a SPARC v7 or compatible.
CPUALPHA Free Pascal target is an Alpha AXP or compatible.

CPUPOWERPC Free Pascal target is a 32-bit PowerPC or compatible.

Table G.3: Possible defines when compiling using target OS

Target operating system Defines

linux

freebsd

netbsd

sunos

go32v2

0s2

Windows 32-bit
Classic Amiga
Atari TOS
Classic Macintosh
PalmOS

BeOS

QNX RTP

«««< prog.tex

LINUX, UNIX

FREEBSD, BSD, UNIX
NETBSD, BSD, UNIX
SUNOS, SOLARIS, UNIX
GO32V2, DPMI
0S2
WIN32
AMIGA
ATARI
MAC
PALMOS
BEOS, UNIX
QNX, UNIX

150

Appendix H

Stack configuration

This gives some important information on stack settings under the different operating systems. It
might be important when porting applications to other operating systems.

H.1 DOS

Under the DOS targets, the default stack is set to 256 kB. This can be modified with the GO32V2
target using a special DJGPP utilgyubedit. It is to note that the stack size may be enlarged with
the compiler switch-Cs). If the size specified withCs is greaterthan the default stack size, it

will be used instead, otherwise the default stack size is used.

H.2 Linux

UnderLINUX, stack size is only limited by the available memory of the system.

H.3 Netbsd

Under NETBSD, stack size is only limited by the available memory of the system.

H.4 Freebsd

Under RREEBSD, stack size is only limited by the available memory of the system.

H.5 BeOS

Under BEOS, stack size is fixed at 256Kb. It currently cannot be changed, it is recommended to turn
on stack checking when compiling for this target platform.

H.6 Windows

Under WINDOWS, stack size is only limited by the available memory of the system.

151

APPENDIX H. STACK CONFIGURATION

H.7 OS/2

Underos/2, stack size is specified at a default value of 8 Mbytes. This currently cannot be changed
directly.

H.8 Amiga

Under AmigaOS, stack size is determined by the user, which sets this value using the stack pro-
gram. Typical sizes range from 4 kB to 40 kB. The stack size currently cannot be changed, it is
recommended to turn on stack checking when compiling for this target platform.

H.9 Atari

Under Atari TOS, stack size is currently limited to 8 kB. The stack size currently cannot be changed,
it is recommended to turn on stack checking when compiling for this target platform.

152

Appendix |

Operating system specific behavior

This appendix describes some special behaviors which vary from operating system to operating sys-
tem. This is described in tableX). The GCC saved registers indicates what registers are saved when
certain declaration modifiers are used.

Table I.1: Operating system specific behavior

Operating systems Min. param. stack align GCC saved registers

Amiga 2 D2..D7,A2..A5
Atari 2 D2..D7,A2..A5
BeOS-x86 4 ESI, EDI, EBX
DOS 2 ESI, EDI, EBX
FreeBSD 4 ESI, EDI, EBX
linux-m68k D2..D7,A2..A5
linux-x86 4 ESI, EDI, EBX
MacOS-68k D2..D7,A2..A5
NetBSD-x86 ESI, EDI, EBX
NetBSD-m68k D2..D7,A2..A5
0S/2 4 ESI, EDI, EBX
PalmOS 2 D2..D7,A2..A5
QNX-x86 ESI, EDI, EBX
Solaris-x86 4 ESI, EDI, EBX
Win32 4 ESI, EDI, EBX

153

	About this document
	Compiler directives
	Local directives
	$A or $ALIGN : Align Data
	$ASMMODE : Assembler mode (Intel 80x86 only)
	$B or $BOOLEVAL : Complete boolean evaluation
	$C or $ASSERTIONS : Assertion support
	$CHECKPOINTER : Check pointer values
	$DEFINE : Define a symbol
	$ELSE : Switch conditional compilation
	$ELSEC : Switch conditional compilation
	$ENDC : End conditional compilation
	$ENDIF : End conditional compilation
	$ERROR : Generate error message
	$F : Far or near functions
	$FATAL : Generate fatal error message
	$FPUTYPE : Select coprocessor type
	$GOTO : Support Goto and Label
	$H or $LONGSTRINGS : Use AnsiStrings
	$HINT : Generate hint message
	$HINTS : Emit hints
	$IF : Start conditional compilation
	$IFC : Start conditional compilation
	$IFDEF Name : Start conditional compilation
	$IFNDEF : Start conditional compilation
	$IFOPT : Start conditional compilation
	$IMPLICITEXCEPTIONS : Do not generate finalization code
	$INFO : Generate info message
	$INLINE : Allow inline code.
	$INTERFACES : Specify Interface type.
	$I or $IOCHECKS : Input/Output checking
	$I or $INCLUDE : Include file
	$I or $INCLUDE : Include compiler info
	$I386_XXX : Specify assembler format (Intel 80x86 only)
	$L or $LINK : Link object file
	$LINKLIB : Link to a library
	$M or $TYPEINFO : Generate type info
	$MACRO : Allow use of macros.
	$MAXFPUREGISTERS : Maximum number of FPU registers for variables
	$MESSAGE : Generate info message
	$MMX : Intel MMX support (Intel 80x86 only)
	$NOTE : Generate note message
	$NOTES : Emit notes
	$OUTPUT_FORMAT : Specify the output format
	$P or $OPENSTRINGS : Use open strings
	$PACKENUM : Minimum enumeration type size
	$PACKRECORDS : Alignment of record elements
	$Q $OVERFLOWCHECKS: Overflow checking
	$R or $RANGECHECKS : Range checking
	$SATURATION : Saturation operations (Intel 80x86 only)
	$SETC : Define and assign a value to a symbol
	$STATIC : Allow use of Static keyword.
	$STOP : Generate fatal error message
	$T or $TYPEDADDRESS : Typed address operator (@)
	$UNDEF : Undefine a symbol
	$V or $VARSTRINGCHECKS : Var-string checking
	$WAIT : Wait for enter key press
	$WARNING : Generate warning message
	$WARNINGS : Emit warnings
	$X or $EXTENDEDSYNTAX : Extended syntax

	Global directives
	$APPID : Specify application ID.
	$APPID : Specify application name.
	$APPTYPE : Specify type of application.
	$CALLING : Default calling convention
	$COPYRIGHT specify copyright info
	$D or $DEBUGINFO : Debugging symbols
	$DESCRIPTION : Application description
	$E : Emulation of coprocessor
	Intel 80x86 version
	Motorola 680x0 version

	$G : Generate 80286 code
	$INCLUDEPATH : Specify include path.
	$L or $LOCALSYMBOLS : Local symbol information
	$LIBRARYPATH : Specify library path.
	$M or $MEMORY : Memory sizes
	$MODE : Set compiler compatibility mode
	$N : Numeric processing
	$O : Overlay code generation
	$OBJECTPATH : Specify object path.
	$PROFILE : Profiling
	$S : Stack checking
	$SMARTLINK : Use smartlinking
	$THREADNAME : Set thread name in Netware
	$THREADING : Allow use of threads.
	$UNITPATH : Specify unit path.
	$VERSION : Specify DLL version.
	$W or $STACKFRAMES : Generate stackframes
	$Y or $REFERENCEINFO : Insert Browser information

	Using conditionals, messages and macros
	Conditionals
	Predefined symbols

	Macros
	Compile time variables
	Compile time expressions
	Definition
	Usage

	Messages

	Using Assembly language
	Intel 80x86 Inline assembler
	Intel syntax
	AT&T Syntax

	Motorola 680x0 Inline assembler
	Signaling changed registers

	Generated code
	Units
	Programs

	Intel MMX support
	What is it about?
	Saturation support
	Restrictions of MMX support
	Supported MMX operations
	Optimizing MMX support

	Code issues
	Register Conventions
	accumulator register
	accumulator 64-bit register
	float result register
	self register
	frame pointer register
	stack pointer register
	scratch registers
	Processor mapping of registers
	Intel 80x86 version
	Motorola 680x0 version

	Name mangling
	Mangled names for data blocks
	Mangled names for code blocks
	Modifying the mangled names

	Calling mechanism
	Nested procedure and functions
	Constructor and Destructor calls
	objects
	classes

	Entry and exit code
	Intel 80x86 standard routine prologue / epilogue
	Motorola 680x0 standard routine prologue / epilogue

	Parameter passing
	Parameter alignment

	Processor limitations

	Linking issues
	Using external code and variables
	Declaring external functions or procedures
	Declaring external variables
	Declaring the calling convention modifier
	Declaring the external object code
	Linking to an object file
	Linking to a library

	Making libraries
	Exporting functions
	Exporting variables
	Compiling libraries
	Unit searching strategy

	Using smart linking

	Memory issues
	The memory model.
	Data formats
	integer types
	char types
	boolean types
	enumeration types
	floating point types
	single
	double
	extended
	comp
	real

	pointer types
	string types
	ansistring types
	shortstring types
	widestring types

	set types
	array types
	record types
	object types
	class types
	file types
	procedural types

	Data alignment
	Typed constants and variable alignment
	Structured types alignment

	The heap
	Heap allocation strategy
	The heap grows
	Debugging the heap
	Writing your own memory manager

	Using dos memory under the Go32 extender

	Resource strings
	Introduction
	The resource string file
	Updating the string tables
	GNU gettext
	Caveat

	Thread programming
	Introduction
	Programming threads
	Critical sections
	The Thread Manager

	Optimizations
	Non processor specific
	Constant folding
	Constant merging
	Short cut evaluation
	Constant set inlining
	Small sets
	Range checking
	And instead of modulo
	Shifts instead of multiply or divide
	Automatic alignment
	Smart linking
	Inline routines
	Stack frame omission
	Register variables

	Processor specific
	Intel 80x86 specific
	Motorola 680x0 specific

	Optimization switches
	Tips to get faster code
	Tips to get smaller code

	Programming shared libraries
	Introduction
	Creating a library
	Using a library in a pascal program
	Using a pascal library from a C program
	Some Windows issues

	Using Windows resources
	The resource directive $R
	Creating resources
	Using string tables.
	Inserting version information
	Inserting an application icon
	Using a pascal preprocessor

	Anatomy of a unit file
	Basics
	reading ppufiles
	The Header
	The sections
	Creating ppufiles

	Compiler and RTL source tree structure
	The compiler source tree
	The RTL source tree

	Compiler limits
	Compiler modes
	FPC mode
	TP mode
	Delphi mode
	GPC mode
	OBJFPC mode
	MAC mode

	Using fpcmake
	Introduction
	Functionality
	Usage
	Format of the configuration file
	clean
	compiler
	Default
	Dist
	Install
	Package
	Prerules
	Requires
	Rules
	Target

	Programs needed to use the generated makefile
	Variables that affect the generated makefile
	Directory variables
	Compiler command-line variables

	Variables set by fpcmake
	Directory variables
	Target variables
	Compiler command-line variables
	Program names
	File extensions
	Target files

	Rules and targets created by fpcmake
	Pattern rules
	Build rules
	Cleaning rules
	archiving rules
	Installation rules
	Informative rules

	Compiling the compiler
	Introduction
	Before starting
	Compiling using make
	Compiling by hand
	Compiling the RTL
	Compiling the compiler

	Compiler defines during compilation
	Stack configuration
	DOS
	Linux
	Netbsd
	Freebsd
	BeOS
	Windows
	OS/2
	Amiga
	Atari

	Operating system specific behavior

